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Guo et al.: Dynamic Development of Hepatocellular Carcinoma

In this study, we sought to identify the crucial genes and pathways involved in the dynamic development of 
hepatocellular carcinoma. In matched normal and hepatocellular carcinoma samples, differentially expressed 
genes were found using the R tool (DESeq). The R package "weighted gene co-expression network analysis" 
was then used to build a co-expression network for the obtained gene expression matrix. We used the "survival" 
and "survminer" R packages to compute the survival endpoints of overall survival and recurrence-free 
survival. Using the "clusterProfiler" R package, gene ontology, Kyoto encyclopedia of genes and genomes, 
and reactome enrichment studies of the co-expression modules were carried out. Cytoscape was used to 
gain a deeper understanding of the network. We discovered that 1237 genes were down-regulated in cancer 
tissues as compared to healthy controls, while 3443 genes were up-regulated (fold change >2 or fold change-2, 
padjust<0.05). Then, using gene set enrichment analysis to compare the tumor sample with healthy controls, 
we looked for pathway enrichments. The results revealed five significantly enriched pathways, including the 
cell cycle, oocyte meiosis, G2M checkpoint, mitotic spindle, and base excision repair, which is partially in line 
with differentially expressed genes-Kyoto encyclopedia of genes and genomes pathway enrichment findings. 
Nine genes were investigated, including RPL8, SLC27A5, KIF23, BUB1B, TRIM16, SCNM1, TKT, RFXANK, 
and GINS1. The gene expression omnibus dataset was also used to further validate the top five genes with the 
highest membership within each module. The gene expression omnibus dataset’s findings largely agreed with 
earlier research showing that these important genes were substantially correlated with tumor grade, tumor, 
node, metastasis/cancer of the liver Italian program/Barcelona clinic liver cancer stages, and overall survival/
relapse-free-survival. Finally, using quantitative real-time reverse transcription-polymerase chain reaction 
and immunohistochemistry, we identified the selected six genes (RPL8, SLC27A5, KIF23, BUB1B, TRIM16, 
and SCNM1) and discovered that they were compatible with earlier findings. These pathways and genes that 
bioinformatics and clinical samples found and validated may be involved in the course of hepatocellular 
carcinoma and may be used as possible biomarkers of hepatocellular carcinoma patients to aid in diagnosis 
and prognostication. It provides a new idea and direction for drug therapy of hepatocellular carcinoma.
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Hepatocellular Carcinoma (HCC) is a highly 
prevalent malignant tumor, with 95 % of new cases 
worldwide eventually resulting in death each year. 
The occurrence of HCC is primarily influenced 
by various factors such as liver cirrhosis, chronic 
hepatitis virus infection, metabolic disorders, 
and autoimmune hepatitis. Currently, standard 
treatment methods include chemotherapy, 
radiotherapy, radiofrequency ablation, tumor 

resection, and liver transplantation. However, 
these methods have limited efficacy for advanced-
stage HCC patients, and the prognosis remains 
unfavorable. Therefore, the development of new 
drugs for HCC treatment is crucial. Currently, drugs 
approved for HCC treatment mainly include multi-
kinase inhibitors (such as sorafenib, lenvatinib, 
cabozantinib), immune checkpoint inhibitors (such 
as nivolumab, pembrolizumab), and angiogenesis 
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inhibitors (such as bevacizumab). These drugs 
function through different mechanisms, including 
the inhibition of tumor cell proliferation, invasion, 
angiogenesis, or enhancing the body’s immune 
response to slow down tumor progression and 
metastasis. However, these drugs also face several 
limitations, including drug resistance, toxic 
side effects, and high costs. To overcome these 
challenges, multiple clinical trials are currently 
underway, covering the development of new 
drugs such as tislelizumab (Programmed Death-1 
(PD-1) inhibitor), tremelimumab (Cytotoxic 
T-Lymphocyte–Associated Antigen 4 (CTLA-
4) inhibitor), durvalumab (PD-L1 inhibitor), and 
more. These drugs hold the promise of providing 
more effective treatment for HCC patients, offering 
new hope for improving patient’s quality of life 
and survival. In recent years, with the development 
of high-throughput sequencing technologies, a 
wealth of genomics, transcriptomics, proteomics, 
and metabolomics data have been generated, 
providing abundant resources for uncovering the 
molecular mechanisms of HCC and discovering 
new drug targets[1-3].

A current understanding of the molecular basis 
of tumor growth, differentiation, survival, and 
recurrence has been gained from gene expression 
studies[4-6]. A single gene may not completely 
capture the characteristics of the tumor due to tumor 
heterogeneity, despite the discovery of multiple 
cancer-related molecular biological indicators. 
Transcript-based prognostic characteristics are 
becoming common these days. In glioblastoma, 
a group of genes was identified, and a module 
emerged that demonstrated better prognostic 
potential than any single gene[7]. In other words, 
genome-wide expression analysis may help to 
depict a variety of cancers more accurately. Instead 
of analyzing individual gene expression variations, 
co-expression network analysis concentrates on 
the interactions between genes. However, it might 
also concentrate on the crucial genes found in 
each significant module. By unsupervised locating 
internal modules of synchronized expression 
genes, co-expression network analysis has been 
employed in cancer research to elucidate signaling 
pathways[8], treatment resistance[9], and tumor 
heterogeneity[10]. It was done on HCC to show 
specific progression patterns from chronic hepatitis 
B and C[11]. Meanwhile, it has been shown that co-
expression analysis can help predict the survival 

of patients with glioma and breast cancer[12,13]. 

In the quest for new drug treatments for HCC, 
it is crucial to gain insights into the molecular 
mechanisms and biomarkers of liver cancer. 
Liver cancer is a highly heterogeneous disease, 
with different patients exhibiting varying gene 
expression profiles and mutation spectra, which 
can impact their responses to drugs and prognosis. 
Therefore, the utilization of high-throughput 
genomics technologies such as Ribonucleic 
Acid-sequencing (RNA-seq) to analyze gene 
expression data from liver cancer patients can 
aid in uncovering the molecular characteristics 
and classification of liver cancer, as well as 
identifying key modules or genes relevant to 
clinical aspects. This study is based on this 
rationale, examining the connections between The 
Cancer Genome Atlas (TCGA) RNA-seq data and 
medical information and elucidating key modules 
or genes associated with various clinical aspects 
(Overall Survival (OS), Recurrence Free Survival 
(RFS), or tumor grading). The analytical approach 
employed in this research includes Weighted Gene 
Co-expression Network Analysis (WGCNA). To 
validate these findings, Gene Expression Omnibus 
(GEO) datasets were collected during this process. 
This research methodology holds the promise 
of providing us with a deeper understanding of 
the molecular mechanisms of HCC and offering 
more precise guidance for future drug treatment 
strategies.

MATERIALS AND METHODS
Sample collecting:

We obtained the TCGA gene expression in HCC 
together with medical data from the UCSC Xena 
website (https://xenabrowser.net/datapages/), 
which contains 373 cancer specimens and 50 
healthy samples. The gene expression dataset for 
validation (GSE14520) was obtained from the 
GEO database (www.ncbi.nlm.nih.gov/geo) under 
the Affymetrix HT Human Genome U133A Array 
platform, which contains 445 tumor samples.

Data pre-processing and differential expression 
analysis:

For the differential expression analysis, the 
RSEM-produced normalized reads count matrix 
for gene expression was chosen[14]. We rounded off 
the expression matrix, and filtered genes expressed 
in <3 samples. Thereafter, using the R program 
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DESeq2[15], we extracted the Differentially 
Expressed Genes (DEGs) by the thresholds of fold 
change >2 or fold change <-2, padjust<0.05.

Co-expression network construction:

The R package “WGCNA” was utilized to 
build a co-expression network for the prepared 
gene expression matrix[16]. First, we performed 
hierarchical clustering using the gene expression 
profile for all tumor samples, six outlier samples 
were removed for a better co-expression result. 
To assess the consistency of gene expression, 
Pearson’s correlations were determined between 
each gene pair. An adjacency matrix was then 
produced and turned into a Topological Overlap 
Matrix (TOM)[17]. Next, taking into account the 
TOM-based diversity, average linkage hierarchical 
clustering was applied. The minimum number of 
co-expression gene modules was set at 30, and 
the soft-thresholding parameter, which can be 
employed to highlight high positive correlations 
while ignoring the impact of negative correlations, 
was set as a cluster of 5.9 gene modules, and we 
did not further merge these modules considering 
that the clustering result was satisfactory. 

Clinical and survival analysis:

Following the association of modules with clinical 
traits and the determination of the pertinent gene 
significance (correlation between genes and traits) 
and module membership (correlation between 
module Eigen gene and gene expression profile), 
we chose the top five hub-genes for additional 
validation, using both the GEO set and clinical 
samples[18].

The “survival” and “survminer” R package (https://
CRAN.R-project.org/package=survMisc) were 
used to determine OS and RFS[19], which were 
used as survival endpoints. In order to perform 
single-module survival analysis, the data were 
dichotomized based on the median expression of 
each gene module. To determine the Hazard Ratio 
(HR), Cyclooxygenase (COX) regression analysis 
was applied. The survival curve was created using 
the Kaplan-Meier method, and a log-rank test was 
utilized for comparison. We further examined 
the relationship between these genes and clinical 
parameters (Alanine Transaminase (ALT) level, 
Alpha-Fetoprotein (AFP) level, Tumour, Node, 
Metastasis (TNM) staging, Cancer of the Liver 
Italian Program (CLIP) staging, and Barcelona 

Clinic Liver Cancer (BCLC) staging) to further 
prove the clinical importance of the genes chosen 
for validation by the GEO dataset.

Functional annotation:

Based on the findings of the genetic composition 
analysis, functional annotation of the modules has 
been completed. The R package “clusterProfiler” 
was used to carry out Gene Ontology (GO)[20], 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and reactome enrichment analyses of 
the co-expression modules. Moreover, high-
level linkages (weight >0.35 for “turquoise” 
module and weight >0.05 for “yellow” module) 
of the co-expressed genes were preserved, and the 
software Cytoscape was applied to provide more 
detailed network insights[21,22]. The central genes 
were defined as those that exhibit strong within-
module correlation and a significant relationship 
with Membership Value (MEs). The hub genes 
were discovered using the largest module kME, a 
measure of the relationship between each gene and 
each ME. To present the results, the WGCNA data 
was loaded into the network application Cytoscape.

Gene Set Enrichment Analysis (GSEA):

A widely used tool for detecting the relationship 
between a collection of genes and a phenotype 
in gene expression profiling data sets is GSEA, 
which was created by Subramanian et al.[23]. GSEA 
was able to find gene sets that were strongly linked 
to the desired phenotypes. This enrichment was 
calculated using the Kolmogorov-Smirnov (KS) 
statistic[24], which contrasts the actual distribution 
of genes throughout a genome-wide list of genes 
ranked according to their correlation with the 
trait with the predicted random distribution of 
genes in a set. Here, TCGA dataset was used to 
conduct GSEA analysis (cancer vs. normal) based 
on an online GSEA software (https://genepattern.
broadinstitute.org/gp/pages/login.jsf).

Patients and specimens:

Two distinct cohorts were included in this 
investigation. Ten patients who underwent 
hepatectomy procedures at the first affiliated 
hospital of Anhui Medical University (Hefei, 
China) between June 2017 and October 2017 and 
who had been pathologically diagnosed with HCC 
were included in cohort[1]. Newly excised HCC 
tissues and surrounding benign samples were 
taken from these patients. From the pathology 
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concentrations of the relevant antibodies were 
RPL8 (Sigma-Aldrich, Rabbit, 1:450 dilution), 
SLC27A5 (Sigma-Aldrich, Rabbit, 1:150 dilution), 
KIF23 (Santa Cruz, Rabbit, 1:35 dilution), BUB1B 
(Abcam, Mouse, 1:100 dilution), TRIM16 (Sigma-
Aldrich, Rabbit, 1:100 dilution), SCNM1 (Sigma-
Aldrich, Rabbit, 1:150 dilution). Phosphate Buffer 
Solution (PBS) was used as a negative control 
instead of the primary antibody, and the positive 
section was referred to as a positive control. The 
specific steps are carried out according to the 
kit instructions; DAB color development, and 
hematoxylin counterstaining. The slice scores were 
evaluated by two independent pathologists using 
semi-quantitative integration. The definite means 
are as follows, first scored according to staining 
intensity; 0 for colorless, 1 for light yellow, 2 for 
brownish yellow, 3 for brown, the staining intensity 
is compared according to the background coloring; 
then the percentage of positive cells is scored; 0 
for negative, 1 for ≤10 %, 2 for 11 %-50 %, 3 for 
51 %-75 % and 4 for >75 %. The two parts were 
multiplied, ≥5 was defined as high expression, and 
<5 was defined as low expression.

RESULTS AND DISCUSSION
We examined the pooled TCGA dataset to 
examine the changes in gene expression profiles 
(DEGs) between HCC biopsy specimens and 
healthy controls. The normal and malignant gene 
sets could first be successfully separated using 
Principal Component Analysis (PCA) (fig. 1A). 
In contrast to normal controls, we discovered that 
1237 genes were down-regulated in cancer tissues, 
whereas 3443 genes were up-regulated (fold 
change >2 or fold change <-2, padjust<0.05; fig. 1B). 
We conducted the KEGG pathway enrichments for 
these upregulated (fig. 1C) and downregulated 
(fig. 1D) DEGs, and the findings revealed that 
the up-regulated genes were more frequently 
concentrated in the cell cycle, DNA replication, 
calcium signaling pathway, systemic lupus 
erythematosus, and neuroactive ligand-receptor 
interaction pathways, whereas the down-regulated 
genes, were more heavily enriched in chemical 
carcinogenesis, complement and coagulation 
cascades, valine, fatty acid degradation, leucine 
and isoleucine degradation, and retinol metabolism 
pathways.

GSEA is a mathematical approach that assesses 
whether a group of genes that have been 

department of the aforementioned hospital, 
paraffin-embedded samples from 73 HCC patients 
who underwent initial surgical resection between 
March 2009 and November 2013 were randomly 
selected for cohort[2]. The study was approved by 
the first hospital connected with Anhui Medical 
University’s Biomedical Ethics Committee 
after each patient gave their informed consent. 
Pathological staging was performed according to 
the international staging system[25]. 

Quantitative Reverse Transcription-Polymerase 
Chain Reaction (RT-PCR):

Fresh tissues total RNA was extracted using 
Invitrogen’s TRIzol reagent in accordance with 
the manufacturer’s instructions. To create the 
complementary Deoxyribonucleic Acid (cDNA) 
template, 2 μg of total RNA was reverse transcribed 
using a first strand cDNA kit from Invitrogen. 
Using a SYBR Green PCR kit from Takara, Dalian, 
China, qRT-PCR was performed using an Applied 
Biosystems 7500 Fast RT-PCR system (Rotkreuz, 
Switzerland). Glyceraldehyde 3-Phosphate 
Dehydrogenase (GADPH) acted as an intrinsic 
standard for targeting genes. PCR reaction was 
carried out in three parallel holes. The following 
were the primer sequences (5'-3'):

RPL8, forward; AAGGGCATCGTCAAGGACATC 
SLC27A5, forward; 
TGGAGGAGATCCTTCCCAAGC,  r e v e r s e ; 
TGGTCCCCGAGGTATAGATGAA KIF23, 
forward; AGTCAGCGAGAGCTAAGACAC 
BUB1B, forward; 
AAATGACCCTCTGGATGTTTGG, reverse; 
GGTTGAGTCTGTAGCCCTCAG, reverse; 
GCATAAACGCCCTAATTTAAGCC TRIM16, 
forward; GTCCTGTCTAACCTGCATGGT 
SCNM1, forward; 
CCGTGCAGGCAAGAAACATC, reverse; 
GGCAGTATCGCCAGTTGTG, reverse; 
TCTGGGTGATAAGTCGTGTCT GADP and 
forward; GCACCGTCAAGGCTGAGAAC R 
GCCTTCTCCATGGTGGTGAA.

Immunohistochemically staining:

Immunohistochemically staining was implemented 
on 2 µm thick pathological slices prepared with 
tissue blocks inserted in paraffin. The slices were 
routinely dewaxed to water and antigen retrieval 
was carried out in a citrate solution under high 
pressure conditions. The source and working fluid 
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the transcriptome. WGCNA elucidated nine co-
expressed modules ranging in size from 95 (pink) 
to 1286 (turquoise) (assigning each module an 
arbitrary color for reference) (fig. 2B). These 
modules were used for subsequent analyses.

Our goal was to determine whether a gene cluster 
from each of the identified modules could be 
connected to HCC clinical characteristics. We 
evaluated the Pearson’s correlations between each 
module and the clinical aspects and found the green 
module to be strongly and favorably related to age 
(at initial pathologic diagnosis, r2=0.18, p<4×10-4) 
and platelets (r2=0.17, p<8×10-4). Genes of yellow 
(r2=0.24, p<4×10-6), blue (r2=0.1, p<0.05) and 
grey (r2=0.18, p<7×10-4) modules were positively 
associated with fetoprotein, one of the important 
markers for the prediction of digestive system 
carcinoma (details shown in fig. 3A). Additionally, 
we investigated how tumor grade and recurrence 
were related to module expression and found that 
pink, yellow, blue, and turquoise modules were 
significantly associated with tumor grade, whereas 
black and brown modules were significantly 
associated with tumor recurrence (fig. 3B and fig. 
3C). According to these findings, significantly 
co-expressed genes in the same module may have 
biological importance.

predetermined exhibit statistically meaningful, 
consistent differences between two distinct 
biological states. We applied GSEA analysis 
for the pathway enrichments by comparing the 
tumor set with normal controls, results showed 
five significantly enriched pathways (fig. 1E-fig. 
1I), including cell cycle, oocyte meiosis, G2M 
checkpoint, mitotic spindle and base excision 
repair, partly consistent with the pathway 
enrichment results of DEG-KEGG.

Fig.1 genes that are expressed differently in HCC 
are identified. A normal and cancer gene sets were 
separated by PCA. B the volcano plot shows DEGs 
(fold change >2 or fold change <-2, padjust<0.05). 
C, D the KEGG analysis of these upregulated 
and downregulated DEGs. GSEA for the pathway 
enrichments by comparing the tumor set with 
normal controls.

In order to extract the gene co-expression modules 
from the merged TCGA dataset, we used the 
WGCNA algorithm. We first employed sample 
clustering to identify outliers, and pool analysis 
was used to eliminate four samples (fig. 2A). Since 
WGCNA concentrates on the TOM rather than the 
correlation between two genes, it may be able to 
show recurrent patterns of gene co-expression in 

Fig. 1: Genes that are expressed differently in HCC are identified, (A): The normal and cancer gene sets were separated by PCA; (B): The volcano 
plot shows DEGs (fold change >2 or fold change <-2, padjust<0.05); (C and D): The KEGG analysis of these upregulated and downregulated DEGs 
and (E-I): Gene set enrichment analysis for the pathway enrichments by comparing the tumor set with normal controls

Fig. 2: (A): The heat map shows nine co-expressed modules ranging in size from 95 (pink) to 1286 (turquoise) (assigning each module an arbitrary 
color for reference) and (B): The pedigree chart shows outliers were detected by sample clustering
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Fig. 3: (A): Examination of the relationships between the nine modules and the clinical traits and (B and C): Tumor grade and recurrence in relation 
to module expression

erythematosus, alcoholism, cellular senescence, 
oocyte meiosis, and DNA replication. Only a 
small number of genes in the yellow module were 
enriched in any particular pathway.

Considering the significance of pink, green, 
yellow, blue, turquoise and black modules, owing 
to their association with tumor grade, OS or RFS, 
we applied another GEO dataset to further validate 
the top five genes with highest membership within 
each module. Finally, nine genes were analyzed, 
including RPL8, SLC27A5, KIF23, BUB1B, 
TRIM16, SCNM1, TKT, RFXANK and GINS1, 
and some were excluded, since they had no 
correlation with OS or RFS (TICRR and TRIM16L 
were not detected in the GEO dataset). The results 
were mostly consistent with previous findings that 
these key genes were significantly associated with 
tumor grade, TNM/CLIP/BCLC stages (fig. 6A- 
fig. 6F), and OS/RFS (fig. 6G-fig. 6L).

These genes may be involved in the initiation 
and progression of HCC, and some of them 
have been validated as effective drug targets or 
candidate compounds, providing crucial clues for 
subsequent drug design or screening. For example, 
RPL8 is a ribosomal protein that can interact with 
various drugs such as doxorubicin, doxycycline, 
and fluorouracil, affecting the proliferation and 
apoptosis of tumor cells. SLC27A5 is a fatty acid 
transport protein that can regulate the sensitivity 
and tolerance of liver cancer cells to chemotherapy 
drugs. KIF23 is a microtubule-driven protein 
that can serve as a novel anti-tumor drug target, 
and some small molecule inhibitors have shown 
inhibitory effects on liver cancer cells. BUB1B 

The correlation of the modules with OS and 
RFS was explored, considering their biological 
significance. Next, the Cox regression model was 
then used to determine the HRs and accompanying 
p values for each dichotomized module in 
423 patients with complete survival data. We 
discovered that turquoise, blue, yellow, pink, and 
green modules were strongly linked with OS (fig. 
4A-fig. 4E), whereas black, turquoise, and yellow 
modules were significantly connected with RFS 
(fig. 4F-fig. 4H). More expression of genes within 
turquoise and yellow modules indicated poor OS 
(turquoise, p<0.0001; yellow: p<0.0016) and RFS 
(turquoise, p<0.0033; yellow: p<0.021) for patients 
with HCC, whereas higher expression of genes 
within green (p=0.037), pink (p=0.0017) and blue 
(p=0.00063) only indicated poor OS. In contrast, 
down-regulated expression of genes within the 
black module indicated poor OS (p=0.00063). The 
results of a survival study based on these modules 
provided additional support for their biological 
significance, particularly as prognostic indicators 
for patients with HCC.

We specialized on the modules in turquoise and 
yellow for subsequent enrichment analyses 
because the turquoise (1286 genes) and yellow 
(390) modules were correlated with tumor grade, 
OS, and RFS features. For turquoise, we applied 
GO-biological pathways, cellular components, and 
molecular function enrichments (fig. 5A-fig. 5C), 
as well as KEGG analysis (fig. 5D). According 
to KEGG enrichment results, the majority of the 
genes in the turquoise module were enriched in 
pathways related to the cell cycle, systemic lupus 
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is a spindle checkpoint protein that can serve as 
a prognostic indicator and therapeutic target, and 
some natural products have been shown to induce 
apoptosis in liver cancer cells by inhibiting BUB1B. 
TRIM16 is a tripartite motif-containing protein 
that can act as an anti-tumor factor, regulating 
the migration and invasion of liver cancer cells. 

SCNM1 is a sodium channel regulatory factor 
that can influence the absorption and excretion of 
certain drugs by liver cancer cells. These genes not 
only have significant biological functions but also 
hold potential pharmaceutical value, warranting 
further research and development.

Fig. 4: (A-E): Examination of the relationships between the modules and OS, and (F-H): Analysis of the module’s relationship to recurrence-free 
survival

Fig. 5: (A-C): The GO analysis of the turquoise module and (D): The KEGG analysis of the turquoise module
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Fig. 6: (A-F): GEO dataset was used whether validate these key genes were significantly associated with tumor grade, TNM/CLIP/BCLC stages and 
(G-L): GEO dataset was used to validate whether these key genes were significantly associated with OS/RFS

comparison to HCC tissues, SLC27A5 expression 
was considerably higher in the surrounding tissues 
(p<0.05), which was consistent with earlier 
findings analyzed using bioinformatics techniques. 
The expressions of six important differential 
genes were then detected using IHC in 46 cases 
of paracancerous paraffin tissues and 73 cases of 
liver cancer. As shown in fig. 9A-fig. 9F and Table 
1-Table 6, the findings suggest that the protein 
expression of these genes, RPL8, KIF23, BUB1B, 
TRIM16, and SCNM1, was significantly elevated 
in HCC tissues compared to paracancerous tissues 
(p<0.05), while SLC27A5 was considerably 
reduced in HCC tissues compared to paracancerous 
tissues (p<0.05). The expressions of protein level 
were mainly consistent with RNA expression 
datum. In conclusion, experimental validation 
of six key DEGs, namely RPL8, SLC27A5, 
KIF23, BUB1B, TRIM16, and SCNM1, revealed 
significant differences in their expression levels 
between HCC tissues and normal tissues, and these 
differences were closely associated with clinical 
characteristics and prognosis of patients. Some of 
these genes have been reported to possess anti-
tumor activity or influence drug metabolism and 
transport functions, providing a basis for further 
exploration of their roles in HCC treatment.

Building upon these insights, we then proceeded 
to investigate the critical modules in HCC and 
their associated hub genes, as well as their 
potential significance in the context of HCC. 
Based on the above analyses, we found the 
modules in yellow and turquoise to be the two 
extremely important modules for HCC, and the 
top hub-genes within these two modules were also 
validated to be markedly correlated with tumor 
clinic opathological features using another distinct 
GEO dataset. As a result, we additionally utilized 
Cytoscape software to recognize the important hub 
genes in the turquoise and yellow modules (fig. 7A 
and fig. 7B). The results were in line with earlier 
discoveries, demonstrating a strong association 
between these genes and others in each module 
and suggesting that they may be essential for the 
initiation or progression of HCC.

First, the messenger Ribonuclic Acid (mRNA) 
expressions of six key differential genes selected 
were detected in ten pairs of matched fresh liver 
cancer tissues and adjacent tissues by qRT-PCR. 
fig. 8A-fig. 8F demonstrates that the expression 
of several genes, including RPL8, KIF23, BUB1B, 
TRIM16, and SCNM1, was significantly up-
regulated in HCC tissues (p<0.05), while, in 
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Fig. 8: (A-F): The mRNA expressions of six key differential genes selected were detected in ten pairs of matched fresh liver cancer tissues as well as 
nearby tissues by qRT-PCR

Fig. 7: (A, B): Using Cytoscape software, the main hub genes in the turquoise and yellow modules were visualized
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Characteristic Case
RPL8 expression

p 
High Low

HCC tissues 73 40 (54.8 %) 33 (45.2 %)
0.018

Paracancerous tissues 46 15 (32.6 %) 31 (67.4 %)

Note: Chi-square test was utilized to compare groups

TABLE 1: EXPRESSION OF THE RPL8 PROTEIN IN TISSUES WITH AND WITHOUT HCC

Characteristic Case
SLC27A5 expression

p
High Low

HCC tissues 73 31 (42.5 %) 42 (57.5 %)
0.029

Paracancerous tissues 46 29 (63.0 %) 17 (37.0 %)

Note: Chi-square test was used for comparison between groups

TABLE 2: EXPRESSION OF THE SLC27A5 PROTEIN IN TISSUES WITH AND WITHOUT HCC

Characteristic Case
KIF23 expression

p
High Low

HCC tissues 73 44 (60.3 %) 29 (39.7 %)
0.044

Paracancerous tissues 46 19 (41.3 %) 27 (58.7 %)

Note: Chi-square test was utilized to compare groups

TABLE 3: EXPRESSION OF THE KIF23 PROTEIN IN TISSUES WITH AND WITHOUT HCC

Characteristic Case
BUB1B expression

p 
High Low

HCC tissues 73 38 (52.1 %) 35 (47.9 %)
0.011

Paracancerous tissues 46 13 (28.3 %) 33 (71.7 %)

Note: Chi-square test was utilized to compare groups

TABLE 4: EXPRESSION OF THE BUB1B PROTEIN IN TISSUES WITH AND WITHOUT HCC

Fig. 9: (A-F): The protein expressions of six key differential genes selected in liver cancer and paracancerous paraffin tissues
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their significance for survival. These results 
confirmed that pink, yellow, blue, and turquoise 
modules were highly associated with tumor grade, 
but black and brown modules were strongly 
linked with tumor recurrence. For the turquoise 
and yellow modules, we also used GO and KEGG 
enrichment analyses. The genes in the turquoise 
module were mostly found to belong to cell cycle-
related pathways, which indicated that they are 
likely the most significant genes for HCC at the 
mRNA level. Interestingly, we discovered that the 
KEGG enrichment results were largely similar to 
the GSEA pathway enrichment results. 

The top five hub-genes from the pink, yellow, blue, 
turquoise, and black modules were validated using 
a different GEO dataset, and we discovered that 
RPL8, SLC27A5, KIF23, TRIM16, SCNM1, TKT, 
RFXANK, and GINS1 genes were significantly 
associated with OS or RFS outcomes in HCC, 
which is only partially consistent with AFP and ALT 
levels or TNM/CLIP/BCLC stages. In addition, we 
examined the levels of the top six significant gene’s 
protein and mRNA expression in patient samples 
of HCC. The outcomes ultimately corroborated the 
validity and significance of the present findings. 
Additionally, we used Cytoscape to visualize the 
hub genes in the turquoise and yellow modules 
to get insight into underlying mechanisms. We 
observed that these substantial hubgenes were 
highly related to other genes, further confirming 
their representative roles in each module or even 
in HCC[30-34].

This study verified the top five hub genes in the 
pink, yellow, blue, green, and black modules 
using different GEO datasets, including RPL8, 

Table 1-Table 6 explains expressions of RPL8, 
SLC27A5, KIF23, BUB1B, TRIM16 and SCNM1 
proteins in neighboring tissues and tissues with 
HCC.

It is envisaged that gene signatures derived 
from genome-based assays would aid in the 
stratification of HCC[26]. The identification of 
gene signatures for predicting cancer survival or 
recurrence in numerous cancer types, including 
bladder cancer[27], renal cancer[28], and HCC[29], has 
been the focus of numerous investigations. In this 
study, the WGCNA approach was used to analyze 
the mRNA datasets containing 423 HCC samples 
in order to identify the genes associated with clinic 
opathological traits in HCC and patient prognosis.

By contrasting tumor and normal samples, we 
first examined the DEGs, and then we looked 
at the KEGG pathway enrichment. The calcium 
signaling route, systemic lupus erythematosus, the 
cell cycle, and DNA replication pathways were all 
found to have significant DEG prevalence, and 
the majority of these pathways have been shown 
to be linked to the progression of HCC. We also 
conducted GSEA analysis, the outcomes of which 
differed slightly from those of KEGG analysis of 
DEGs; the genes were markedly elevated in cell 
cycle-related pathways.

Then, nine distinct co-expression modules 
were found using the WGCNA analysis. While 
turquoise, blue, yellow, pink, and green modules 
were significantly associated with OS, yellow, 
turquoise, and black modules were strongly 
associated with RFS. For each module, we 
conducted a Cox-regression analysis to determine 

Characteristic Case
BUB1B expression

p
High Low

HCC tissues 73 49 (67.1 %) 24 (32.9 %)
0.037

Paracancerous tissues 46 22 (47.8 %) 24 (52.2 %)

Note: Chi-square test was utilized to compare groups

TABLE 5: EXPRESSION OF THE TRIM16 PROTEIN IN TISSUES WITH AND WITHOUT HCC

Characteristic Case
BUB1B expression

p
High Low

HCC tissues 73 45 (61.6 %) 28 (38.4 %)
0.017

Paracancerous tissues 46 18 (39.1 %) 28 (60.9 %)

Note: Chi-square test was utilized to compare groups

TABLE 6: EXPRESSION OF THE SCNM1 PROTEIN IN TISSUES WITH AND WITHOUT HCC
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SLC27A5, KIF23, TRIM16, SCNM1, TKT, 
RFXANK, and GINS1. These genes exhibited 
significant correlations with HCC’s OS or RFS 
outcomes, and some of them were consistent with 
AFP and ALT levels or TNM/CLIP/BCLC staging. 
Additionally, protein and mRNA expression 
levels of the top six crucial genes were examined 
in HCC patient samples, ultimately confirming 
the validity and significance of these findings. 
Furthermore, to gain deeper insights into potential 
mechanisms, we visualized the hub genes in the 
turquoise and yellow modules using Cytoscape, 
observing their high correlations with other genes, 
further substantiating their representative roles in 
each module and even in HCC. In summary, these 
discoveries will provide more accurate prognostic 
and diagnostic information for HCC patients. In 
this study, we performed transcriptome sequencing 
and differential expression analysis of HCC tissues 
and adjacent tissues, annotated their functions, 
and discussed relevant drug targeting possibilities. 
Genes such as RPL8, SLC27A5, KIF23, BUB1B, 
TRIM16, SCNM1, and others not only play critical 
biological roles but also hold potential value in 
drug development. Our clinical validation results 
indicated that these genes are closely associated 
with clinical characteristics and prognosis in 
patients and exhibit consistent expression patterns 
and prognostic value across different populations. 
In conclusion, our research offers new insights 
and directions for HCC drug therapy, but further 
experimental validation and clinical trials are 
needed to confirm our findings and optimize 
treatment strategies, aiming to provide better 
survival prospects for HCC patients.
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