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Yao et al.: Prognostic Radiosensitivity Gene Signatures in Low-Grade Gliomas

Low-grade gliomas are typically slow-growing tumors of the central nervous system, which can transform into 
more aggressive types within a decade. Radiotherapy is an effective treatment for suppressing the development 
of aggressive tumors. The purpose of this study was to explore the characteristics of radiosensitivity genes and 
the modeling of prognostic risk in patients with low-grade glioma. The data in this study come from the cancer 
genome atlas and prognostic assessment model was constructed based on the coefficient values of selected genes 
in multivariate Cox proportional hazards regression. The probability of individual survival was then predicted 
using a nomogram. Differences in tumor immune microenvironment between high- and low-risk groups were 
analyzed. We constructed a prognostic radiosensitivity-related gene signature for patients with low-grade 
gliomas. Kaplan-Meier survival curve analysis revealed a significantly better prognosis for low-risk group than 
for high-risk group (p<0.001) and receiver operating characteristic curves show accuracies of 0.869, 0.912 and 
0.873 for 1, 3 and 5 y, respectively. Radiosensitivity-related gene signature was identified as a single prognostic 
indicator with hazard ratio=1.159 and 95 % confidence interval=1.102-1.219 (p<0.001). The immune-related 
analysis showed radiosensitivity-related gene signature with significant differences in radiosensitivity between 
high and low-risk groups. We identified thymosin beta 4 X-linked, insulin-like growth factor binding protein 5, 
moesin, ribophorin 2, cyclin dependent kinase inhibitor 2C and prostaglandin F2 receptor negative regulator 
as the gene signatures for predicting the prognosis of patients receiving radiotherapy in low-grade gliomas.
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Low-Grade Gliomas (LGG) occur in approximately 
20 % of patients with Central Nervous System (CNS) 
tumors[1]. Although the incidence of LGG is low, 
it is the most prevalent brain tumor in children[2].
The treatment of gliomas involves standard 
management approaches including observation, 
surgery, radiotherapy and/or chemotherapy, and it is 
determined based on many factors[3]. In particular, 
patients with LGG show a wide variation in their 
treatment responses to radiotherapy[4]. 

Previous studies have identified many radiosensitivity 
genes and more attempts are being made to construct 
robust gene signatures for the prognosis of various 
cancers, such as nasopharyngeal carcinoma, 
breast, pancreatic cancer and glioblastoma[5-7]. The 
Radiosensitivity Index (RSI) is derived from the 
10 genes which includes Androgen Receptor (AR), 
Jun proto-oncogene (c-JUN), Signal Transducer and 
Activator of Transcription 1 (STAT1), Protein Kinase 

C beta (PRKCβ), v-Rel avian reticuloendotheliosis 
viral oncogene homolog A (RELA), cellular homolog 
of Abelson murine leukemia viral oncogene (cABL), 
Abelson murine leukemia viral oncogene homolog 1 
(ABL1), Small Ubiquitin like Modifier 1 (SUMO1), 
Cyclin Dependent Kinase 1 (CDK1), Histone 
Deacetylase 1 (HDAC1) and Interferon Regulatory 
Factor 1 (IRF1) and it has been performed to predict 
the Survival Fraction at 2 Gray (SF2) across 48 
human cell lines for pan-cancers[8]. Additionally, 
a 31-gene signature which include Syndecan 2 
(SDC2), Metallothionein-1E (MT1E), Mesenchyme 
homeobox protein 2 (MEOX2), Lysyl Oxidase 
homolog 1 (LOXL1), Isoleucine (I) glutamine 
(Q) motif and Sec7 domain-containing protein 
1 (IQSEC1), Intercellular Adhesion Molecule 1 
(ICAM1), Chitinase-3-like protein 1 (CHI3L1), 
Cluster of Differentiation 163 (CD163), Complement 
component 1s (C1S), 3-hydroxybutyrate 
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dehydrogenase 1 (BDH1), B-Cell Lymphoma 
2-related protein A1 (BCL2A1), Podoplanin 
(PDPN), Myeloid Differentiation primary response 
88 (MYD88), Galectin 8 (LGALS8), Interferon 
Stimulated exonuclease Gene 20 (ISG20), Adenosine 
Triphosphatase sarcoplasmic/endoplasmic reticulum 
Ca2+ transporting 1 (ATP2A1), Thyroid-Stimulating 
Hormone Receptor (TSHR), Tumor Necrosis Factor 
Receptor Superfamily member 1A (TNFRSF1A), 
T Cell leukemia Translocation Altered (TCTA), 
Solute Carrier family 27 member 3 (SLC27A3), 
S100 calcium binding protein A8 (S100A8), Platelet 
Derived Growth Factor subunit A (PDGFA), MX 
dynamin like guanine triphosphatase 1 (MX1), 
Moesin (MSN), Heat Shock factor Binding Protein 1 
(HSBP1), Frizzled class receptor 7 (FZD7), Dynein 
Light chain Tctex-Type 3 (DYNLT3), Midkine 
(MDK), Growth factor Receptor Bound protein 
10 (GRB10), Cytochrome B561 family member 
D2 (CYB561D2) and Developmentally Regulated 
Guanine Triphosphate (GTP) Binding Protein 2 
(DRG2) is also reported as a robust approach for 
determining the radiosensitivity of gliomas[9]. 

It is generally believed that hypoxia genes such as 
Acylglycerol Kinase (AGK), ETS Translocation 
Variant 4 (ETV4), Partitioning Defective 6 family 
cell polarity regulator Alpha (PARD6A), Protein 
Tyrosine Phosphatase 4A2 (PTP4A2), Right Open 
reading frame Kinase 3 (RIOK3), Sigma non-
opioid intracellular Receptor 1 (SIGMAR1), Solute 
Carrier family 34 member 2 (SLC34A2), Suppressor 
of Mothers Against Decapentaplegic (SMAD) 
Ubiquitination Regulatory Factor 1 (SMURF1), 
Serine/Threonine Kinase 33 (STK33), Transcription 
Elongation factor A Like 1 (TCEAL1), Tissue Factor 
Pathway Inhibitor (TFPI) and Uroporphyrinogen 
III Synthase (UROS) and their radiosensitivity risk 
indicator models are often developed to predict the 
prognosis of LGG[10]. However, these prognostic 
models are not comprehensive and seldom validated 
in the clinical patients with LGGs. This study aims to 
identify the gene signatures serving as a prognostic 
biomarker for predicting the Overall Survival (OS) 
of patients receiving radiotherapy in LGGs. We 
comprehensively analyzed 395 radiosensitive cancer 
genes with OS time in 514 patients from The Cancer 
Genome Atlas (TCGA) and the prognostic score was 
further validated in external cohort of 929 patients 
with LGGs from the Chinese Glioma Genome Atlas 
(CGGA).

MATERIALS AND METHODS

Datasets and gene sets:

In this study, data related to 1114 patients were 
obtained from the TCGA database. A total of 514 
patients were selected and their gene expression data 
was screened for genes related to radiosensitivity. An 
external validation cohort of gene expression was 
obtained from the CGGA. All the cohorts in this study 
were derived from published databases including 
TCGA and CGGA, and strictly followed publication 
guidelines. A total of 395 radiosensitive cancer genes 
were downloaded from the Cancer Radiosensitivity 
Regulation factors database (dbCRSR) (http://
bioinfo.ahu.edu.cn:8080/dbCRSR/)[11].

Screening for radiosensitivity-related genes:

Patients with p<0.01 and Differentially Expressed 
Genes (DEG)>2 for log2FC were identified by linear 
models for microarray data (limma) R package. The 
related genes with radiosensitivity were selected in 
DEG. Radiosensitivity-associated genes with p<0.05 
were searched by univariate Cox regression. Genes 
associated with radiosensitivity were searched by 
Least Absolute Shrinkage and Selection Operator 
(LASSO) Cox regression.

Establishment of a prognostic risk model:

To establish a prognostic risk model, 514 patients 
with LGGs were randomly divided into a training 
set (n=316) and a testing set (n=198). Multivariate 
Cox proportional risk regression analysis was then 
performed to establish a prognostic model for LGGs 
in an intersectional set of genes associated with 
radiation sensitivity. For the patient's risk score, the 
specific calculation method is:

Risk score=∑i=1
N coefficient×gene expression

Consider N as the number of radiosensitivity-related 
genes.

The investigators incorporated radiosensitivity-
related gene count data into the prognostic model 
and calculated the results for each LGG patient's 
risk score. The risk score is divided into low-risk 
group and high-risk group with the average value as 
the dividing line. The predictive ability for different 
risk groups was assessed by plotting Kaplan-Meier 
survival curves and Receiver Operating Characteristic 
(ROC) curve.
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Bioinformatics analysis:

The identification of DEG requires the application 
of version 2.1.1 of the limma R package. Through 
multi-dimensional analysis such as Gene Ontology 
(GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), the annotations of DEG and radioactivity-
related indicators were analyzed. Not only that, 
but also to analyze the status of tumor-infiltrating 
immune cells through Cell-type Identification by 
Estimating Relative Subsets of Ribonucleic Acid 
(RNA) Transcripts (CIBERSORT) combined with 
LM22, a matrix file that includes genes and 22 
mature human hematopoietic cell populations[12]. 
Differences in Tumor Microenvironment (TME) 
between risk groups were judged by using the 
Estimation of Stromal and Immune cells in Malignant 
Tumor tissues using Expression data (ESTIMATE) 
algorithm[13,14], while some references are from the 
Molecular Signature Database (MSigDB)[15,16]. Gene 
Set Enrichment Analysis (GSEA) of different risk 
groups was based on prognostic models[17]. Fixed 
Dose Rate (FDR)<0.05 and p<0.05 for Nonoperative 
Management (NOM) were considered to be rich in 
biological processes and pathways.

Statistical analysis:

All the statistical data was analyzed using R package 
(version 4.1.2). To confirm the association between 
clinical characteristics and risk score, this study used 
univariate and multivariate Cox regression analysis 
methods. Survival analysis was performed using 
Kaplan-Meier survival curves. Differences between 

two different risk groups were tested using the 
Kruskal-Wallis test. For the clinical characteristics 
of the two different risk groups, Fisher's exact test 
or chi-square (χ2) test was used. The relationship 
between gene expression, immune cell infiltration 
and immune microenvironment in the two different 
risk groups were evaluated using different coefficients 
of Pearson or Spearman.

RESULTS AND DISCUSSION
The Radiosensitivity-Related Gene Signature 
(RadRGSig) results were identified and the number 
of DEGs detected by different groups in the TCGA-
LGG cohort was 1158, including 617 up-regulated 
genes and 541 down-regulated genes. A total of 345 
radiosensitivity-related genes were selected from 
the DEGs according to the dbCRSR. GO and KEGG 
enrichment showed radiosensitivity (p<0.05) in 
function. Furthermore, 45 genes were filtered using 
the single-factor method and the number of genes 
that passed the LASSO Cox regression method 
and contracted was 23 genes (fig. 1A and fig. 1B). 
By using multivariate Cox regression analysis, 6 
genes were found to be moderately associated with 
prognosis and obtained a refined prognostic model 
(Table 1). By establishing a risk score, specifically 
by:

Risk score=0.37×Thymosin Beta 4 X-linked 
(TMSB4X)+0.14×Insulin-like Growth Factor 
Binding Protein 5 (IGFBP5)+0.52×MSN+(-
0.43)×Ribophorin 2 (RPN2)+0.23×Cyclin Dependent 
Kinase Inhibitor 2C (CDKN2C)+0.44×Prostaglandin 
F2 Receptor Negative regulator (PTGFRN)

Gene
Univariate Cox analysis Multivariate Cox analysis

HR p-value Coefficient HR p-value

SPP1 1.69 (1.51-1.90) 1.20E-18

TMSB4X 2.30 (1.96-2.69) 7.91E-25 0.37 1.45 (1.09-1.93) 0.0106

AQP1 1.51 (1.36-1.67) 2.61E-14

IGFBP5 1.83 (1.60-2.08) 7.98E-19 0.14 1.15 (0.96-1.37) 0.1217

TUBA1B 2.40 (1.87-3.10) 1.21E-11

MSN 2.69 (2.25-3.21) 1.46E-27 0.52 1.68 (1.29-2.18) 0.0001

RPN2 5.24 (3.58-7.67) 1.46E-17 -0.43 0.65 (0.36-1.17) 0.1492

PTMA 2.94 (2.22-3.87) 2.85E-14

H2AFX 2.12 (1.64-2.74) 1.10E-08

TABLE 1: UNIVARIATE AND MULTIVARIATE ANALYSIS OF 6 GENES SELECTED FROM LASSO COX 
REGRESSION
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FCER1G 1.88 (1.58-2.23) 8.93E-13

PIGT 5.74 (4.09-8.05) 6.08E-24

CDKN2C 1.89 (1.64-2.18) 2.31E-18 0.23 1.25 (1.01-1.56) 0.0444

SHISA5 4.21 (3.04-5.85) 7.96E-18

NEK6 2.47 (1.98-3.07) 9.05E-16

SMS 3.49 (2.68-4.55) 2.15E-20

GNS 3.19 (2.46-4.13) 2.78E-18

PTGFRN 2.78 (2.27-3.42) 1.47E-22 0.43 1.54 (1.14-2.08) 0.0049

TFRC 2.80 (2.26-3.46) 3.83E-21

PSMC2 7.34 (4.99-10.81) 4.75E-24

DCTD 3.82 (2.83-5.16) 2.50E-18

RFC2 3.63 (2.76-4.79) 5.57E-20

NFIL3 2.44 (1.86-3.20) 1.39E-10

PBK 1.72 (1.49-1.99) 3.69E-13

Note: SPP1: Secreted Phosphoprotein 1; AQP1: Aquaporin 1; TUBA1B: Tubulin Alpha-1B; PTMA: Prothymosin Alpha; H2AFX: H2A 
histone family member X; FCER1G: Fc Fragment of Immunoglobulin Epislon (ε) Receptor 1G; PIGT: Phosphatidylinositol Glycan anchor 
biosynthesis class T; SHISA5: Shisa family member 5; NEK6: Never in Mitosis gene A(NIMA)-related Kinase-6; SMS: Spermine Synthase; 
GNS: Glucosamine (N-acetyl)-6-Sulfatase; TFRC: Transferrin Receptor; PSMC2: Proteasome 26S subunit adenosine triphosphatase 2; 
DCTD: Deoxycytidine monophosphate (DCMP) Deaminase; RFC2: Replication Factor C subunit 2; NFIL3: Nuclear Factor, Interleukin 3 
regulated gene; PBK: PDZ-Binding Kinase

time at different time’s shows that the mortality rate 
is basically the same as the actual mortality rate (fig. 
3B-fig. 3D). The 5 y ROC curve illustrates that the 
risk score has the highest accuracy among the basic 
clinical characteristics of LGGs patients with Area 
Under the Curve (AUC)=0.829 (fig. 3E). 

To test the prognostic ability of the prognostic 
model in this study, we randomly sampled 30 % of 
the patients from the TCGA-LGG cohorts as the 
internal testing cohort. The survival analysis showed 
that patients with the low risk score had higher OS 
than those with high risk scores (p<0.001) (fig. 4A). 
Prognostic model ROC values at different times (1 
y, 2 y and 3 y) in the internal test cohort were 0.858, 
0.889 and 0.846, respectively (fig. 4B). 

By using the same approach as that for the internal 
testing cohort, the Kaplan-Meier survival curve 
was used for the external cohort and indicated that 
patients could be stratified by the risk score (fig. 4C), 
and the ROC results of the external test cohort in 
the database at different times (1 y, 2 y and 3 y) are 
0.743, 0.806 and 0.817, respectively (fig. 4D). 

Regardless, the prognostic model of radiosensitivity-
associated gene signatures is a robust and precise 
tool for patients with LGG who have undergone 
radiotherapy.

The risk score accuracy of the test cohort can be 
found by the ROC curve (fig. 1C). According to the 
Kaplan-Meier survival curve, it was found that there 
were significant differences in OS among different 
risk groups of LGG patients (p<0.001) (fig. 1D).

Through the Cox regression analysis of different 
variables and the combined use of clinical 
characteristics, it is judged whether the risk score 
can be used as a single prognostic factor. The Hazard 
Ratios (HRs), 95 % Confidence Interval (CI) and the 
p-values for the risk score were 1.237 (1.185-1.291), 
p<0.001 in univariate and 1.159 (1.102-1.219), 
p<0.001 in multivariate Cox regression analysis (fig. 
2A and fig. 2B). The results of the Kaplan-Meier 
survival curves shows a clear difference (p<0.01) 
between clinical factors among risk groups which 
covers different ages, genders and stages of tumors 
(fig. 2C). The results showed significant association 
between clinical features and risk score (p<0.05), 
and also indicated a strong association between the 
risk score and the prognosis of LGG patients.

In this study, both clinical factors and risk scores were 
analyzed, and a prediction line map was established 
for the survival prediction of LGG patients at 
different times (1 y, 3 y and 5 y) (fig. 3A). The results 
of the adaptive nomogram calibration curve of OS 



www.ijpsonline.com

Special Issue 4, 2023 Indian Journal of Pharmaceutical Sciences 75

Fig. 1: LASSO Cox regression and ROC for the risk score, (A) LASSO coefficient profiles of the 23 genes; (B) Select optimal parameter lambda (λ) 
using 10-fold cross-validation; (C) The ROC for the risk score with OS and (D) Kaplan-Meier curve shows the survival analysis of high and low-risk 
groups 
Note: (B): The dotted gray vertical lines on the left side corresponds to the minimum value for multivariate Cox model and the right side corresponds 
to the minimum value for the standard deviation; (C): (  ) AUC at 1 y; (  ) AUC at 3 y and (  ) AUC at 5 y and (D): (  ) High risk and  
(  ) Low risk

A

C

B

D
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Fig. 2: Relationship between clinical features and risk score, (A) Univariate; (B) Multivariate Cox regression analysis illustrating associations  
between clinical outcomes and risk scores and (C) Kaplan-Meier curves showing survival analysis for clinical factors
Note: (C): (  ) High risk and (  ) Low risk

A B
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Fig. 3: Predicting the results of the nomogram, (A) Nomogram for predicting OS in LGG patients (1, 3 and 5 y); (B) Calibration plots for 1 y OS time; 
(C) Calibration plots for 3 y OS time; (D) Calibration plots for 5 y OS time and (E) ROC for the clinical factors with OS at 5 y in TCGA-LGG cohorts
Note: (E): (  ) Risk score; (  ) Age; (  ) Gender and (  ) Grade

A

B

D

C

E

Fig. 4: Validation of testing and CGGA cohorts, (A) Survival analysis of patients at different risk scores in the test cohort; (B) Examining the ROC 
of the risk score in the test cohort; (C) Survival analysis of patients at different risk scores in the CGGA cohort and (D) Examining the ROC of the 
risk score in the CGGA cohort
Note: (A): (  ) High and (  ) Low; (B): (  ) AUC at 1 y; (  ) AUC at 3 y and (  ) AUC at 5 y; (C): (  ) High and (  ) Low and (D): (  ) 
AUC at 1 y; (  ) AUC at 3 y and (  ) AUC at 5 y

A

C

B
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This study delved into the stratification ability of 
the 6-gene signature. Principal Component Analysis 
(PCA) by comparing different risk groups in the 
genome-wide, radiosensitivity-associated genes and 
6-gene risk score models. The Three Dimensional 
(3D) map confirmed that the risk score can accurately 
distinguish between different risk groups. However, 
for the distinction of different risk groups, the 
genome-wide and radiosensitivity-associated genes 
cannot be accurately distinguished (fig. 5A-fig. 5C). 
The above results illustrate that the risk score is an 
accurate independent prognostic factor for LGG 
patients.

To investigate the function of the prognostic 
signature, the GSEA was performed for annotation 
and the top 10 pathways were identified. Multiple 
tumor progression pathways enriched in low-risk 
patients (fig. 5D). Multiple cellular components 
of biological processes are enriched in high-risk 
patients. Those enriched in low-risk patients included 
cytoplasmic microtubule organization, negative 
regulation of synaptic transmission, etc. (fig. 5E). 
The above results confirmed that there may be a 
certain relationship between RadRGSig and tumor 
development, and immune microenvironment.

This study investigated differences in TME and 
immune cell affinity among different risk groups 
of LGG patients to evaluate whether there is an 
association between RadRGSig and TME. The 
immune microenvironment mainly examines the 
estimated score, immune score and matrix score. 
Along with that the high-risk group has higher values 
than the low-risk group in these three indicators 
(p<0.001) (fig. 6). 

In addition, the results of immune cell infiltration 
in different risk groups showed that the low-risk 
group had higher T cells (p<0.001), gamma delta T 
cells (p<0.009), activated Natural Killer (NK) cells 
(p<0.001), monocytes (p<0.001), activated mast cells 
(p<0.001) and eosinophils (p<0.001). The high-risk 
group was higher in the proportion of plasma cells 
(p=0.012), T cells Cluster of Differentiation 8 (CD8) 
(p<0.001), T cell Cluster of Differentiation 4 (CD4) 
memory activation (p<0.001), T cell follicular helper 
cells (p<0.001), M0 macrophages (p<0.001), M1 
macrophages (p<0.001), M2 macrophages (p=0.033) 
and neutrophils (p<0.001). These results indicate 
the developed RadRGSig is not only a prognostic 
signature, but it can also reveal the level of immune 
cell infiltration (fig. 7).

Fig. 5: Results based on PCA and gene set enrichment analysis, (A) PCA based on the different risk groups expressed in all genes; (B) PCA based on 
the genes associated with radiosensitivity; (C) PCA based on the 6 features of the prognostic model; (D) KEGG enrichment analysis and (E) GSEA-
based 6-signature GO enrichment analysis
Note: (A-C): (  ) Low risk and (  ) High risk

A D E

B

C
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Fig. 6: Comparison of immune microenvironment between the high-risk and low-risk groups. Violin plots of estimated stromal immune scores for 
6 genes established between different risk groups 

Based on the previous reports, approximately 50 % of 
patients with cancer should receive radiotherapy and 
the role of radiotherapy is confirmed to be optimally 
utilized in cancer treatment based on clinical 
guidelines[18]. Surgery is accepted as the major initial 
treatment in patients with LGGs and immediate 
postoperative radiotherapy provides a significant 
progression-free survival benefit. However, the OS 
of patients with LGGs did not improve. Thus, the 
important prognostic factors need to be considered 
when treating patients with LGGs. 

Unfortunately, a universal radiosensitivity gene 
signature for the prognosis of patients with LGGs 
is not clear. This indicates the presence of other 

molecular factors; moreover, prognosis based 
on radiosensitivity-related genes has rarely been 
investigated in patients with LGGs.

We investigated the potential prognostic factors 
in TCGA-LGG cohorts and detected six genes 
(TMSB4X, IGFBP5, MSN, RPN2, CDKN2C and 
PTGFRN) as the radiosensitivity gene signature for 
patients with LGGs. TMSB4X is involved in cell 
glioma angiogenesis and tumor progression such 
as proliferation, migration and differentiation[19,20]. 
IGFBP5 inhibits cell proliferation and increases cell 
invasion by Endothelial-Mesenchymal Transition 
(EMT) and the Akt signaling pathway[21]. Targeting 
MSN with the microRNA-200c (miR-200c) 

Fig. 7: Differences in immune cell infiltration between the high-risk and low-risk groups. Violin plots exhibits immune infiltration differences  
between high- and low-risk group
Note: (  ) Low risk and (  ) High risk
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prognostic risk model for patients with LGGs who 
might respond to radiotherapy for the first time, 
suggesting that gene signature offers a promising 
biomarker for predicting the prognosis.
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suppresses the tumor progression of glioma[22]. We 
also found that MSN overexpression in the high-risk 
groups indicates poor prognosis in patients with LGGs. 
RPN2 overexpression inhibits the radiosensitivity 
of glioma cells by activating the Signal Transducer 
and Activator of Transcription 3 (STAT3) signal 
transduction pathway and is targeted by miR-181c; 
it mediates glioma progression and temozolomide 
sensitivity through the Wingless/Integrated (WNT)/
beta-catenin signaling pathway[23,24]. Based on the 
pan-cancer analysis of homozygous deletions in 
primary tumors, CDKN2C is one of the rare tumor 
suppressors[25]. PTGFRN coordinates survival 
signaling in glioblastoma multiforme and its 
overexpression can predict tumor grade and enables 
the prognosis of glioma[26-28]. In conclusion, although 
these radiosensitivity genes are associated with the 
growth of glioma, it is the first time to report that 
they are prognostic biomarkers for LGGs.

We also assessed whether the prognostic RadRGSig 
is associated with the immune microenvironment. 
Infiltrating immune cells of gliomas comprise 
microglia, peripheral macrophages, leukocytes, 
granulocytes, Myeloid-Derived Suppressor Cells 
(MDSCs), T lymphocytes and Tregs[29]. The immune 
microenvironment results of different risk groups 
reflected the intratumoral density of glioma-
associated macrophages and naive B cells, which 
showed a negative correlation with the survival rate 
of patients in the high-risk group, but activated mast 
cells and monocytes were associated with low-risk 
groups. The survival rate of patients in the low risk 
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