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Lennox-Gastaut syndrome is commonly characterized by a triad of features including multiple seizure 
types, intellectual disability or regression. The long-term prognosis for Lennox-Gastaut syndrome is 
generally poor due to uncontrolled seizures. Lennox-Gastaut syndrome type of seizures is epilepsy which 
is due to abnormal vibrations occurring in seizures. During the time of such abnormal vibrations, both the 
seizures and the lungs suffer a lack in oxygen content to a considerable extent. This results in prolonged 
vibrations and loses of nervous control. As a neuro-lung protective strategy, a novel attempt has been 
made to enrich both seizures and lungs with oxygen content through the support of perfluorodecalin 
(an excellent oxygen carrier) C10F18 along with an enhancement in the antiepileptic activity by the two 
chosen antiepileptic drugs carbamazepine and benzodiazepine. The ultraviolet-visible spectrophotometer, 
fluorescence spectrograph, ultrasonic laser diffraction and scanning electron microscope studies reveals 
the co-existence of fluorine and drug in the emulsion produced by the sonication of both perfluorodecalin 
and the drug together. The presence of adequate fluorine and carbon play a catalytic role in ensuring the 
oxygen content and the antiepileptic activity of drug components.
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Lennox-Gastaut type of syndrome is complex epilepsy 
occurring due to abnormality in seizures. Control 
of seizures is difficult. An unexpected disharmony 
in seizures results in epilepsy. Drugs that are most 
preferred and prescribed for such kind of disease causes 
adverse side effects. Further any new drug for that 
matter faces such problems and their effectiveness on 
the affected seizures is still an unsolved problem[1-10].

Though the valid reasons for the abnormal behavior of 
seizures, at any particular time, are still a mystery, there 
seems to be an in adequacy in the supply of oxygen 
content to both the seizures and lungs. Patients affected 
by such problems, happens to find it difficult to breath 
freely, tends to lose the nervous balance. Seizures, at 
the time of abnormal vibrations, lack in oxygen content 
and hence the abnormal vibrations prolongs for a longer 
period of time[11-16].

As a neuro-lung protective strategy, a novel attempt 
has been made through this paper to apply the 

phenomenon of oxygen enrichment to both seizures 
(brain) and lungs simultaneously with the support of 
perfluorodecalin C10F18 (PFD). At the same time the 
antiepileptic activity is expected to enhance through the 
chosen antiepileptic drugs (AEDs) like carbamazepine 
(CBZ) and benzodiazepine (BDZ). Though valproate, 
topiramate and lamotrigine are deemed to be first line 
drugs, CBZ and BDZ are chosen for this study because 
of their simple structures and could be more adaptive to 
accommodate such fluorinated compounds.

The incorporation of one or more fluorine atoms into a 
compound can have a dramatic effect on its chemical 
and physical properties and fluorinated molecules 
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are of considerable importance in a wide range of 
industries including pharmaceuticals, agrichemicals, 
medical imaging, plastics, polymers and electronics. 
However the synthesis of these important molecules 
is fundamentally difficult due to the high reactivity of 
fluorinating agents.

To achieve, either one has to come out with a novel 
drug containing fluorine compounds and the suitable 
AEDs, both as single organized structure (in the form 
of a single crystal) or try to convert both the drug and 
the PFD into an emulsified mixture and study their 
predominant contents and assess the particle diameter.

The above said first notion is purely optional and PFD 
is absolutely neutral by structure. It is quite difficult to 
break any of its bonds and to make it reactive with either 
CBZ or BDZ. Though the neutral structure of PFD is not 
so conducive for a perfect chemical reaction, the basic 
reason for choosing C10F18 is due to the fact that it is 
an excellent oxygen carrier[17,18]. Chemically it is highly 
electronegative. The role of PFD in cardiopulmonary 
by-pass, lung ventilation, ventilation fluids, cell-
culture supplement, diagnostic imaging agents, drug 
formulation and delivery were extensively proved[19-23].

In spite of all these applications their perfect neutral 
chemical structure is not supportive for any chemical 
reaction with any compounds. The only effective way to 

use them is to convert them into an emulsion. There are 
decent numbers of studies substantiating the excellent 
oxygen carrying capacity of PFD in emulsified form[24-

31]. Based on the above said facts the second idea is more 
viable. To achieve these following steps were adopted.

MATERIALS AND METHODS

CBZ, BDZ and PFD used as 99 % pure acquired from 
Sigma-Aldrich. They are used without any further 
purification. Dimethylformamide (DMF) is used as an 
effective solvent.

In the first step, 100 mg of CBZ and BDZ each are 
dissolved in 30 ml of DMF to prepare high concentrated 
solutions. Ultrasonic laser diffraction (ULD) has been 
performed to determine the sound velocity through 
the solution and the compressibility is estimated. 
The results are tabulated in Table 1. Both the high 
concentrated solutions were subjected to ultraviolet-
visible (UV-VIS) spectrographic and fluorescence 
spectrophotograph studies to analyze the intensity 
and position of the peaks of the pure CBZ and BDZ 
drugs exclusively. The study is repeated for very low 
concentrated solutions too. The reports are presented in 
fig. 1-fig. 6.

In second step, it involves a continuous process of 
mixing 10 ml of PFD to the high concentration solution 

S. No Sample Ultrasonic velocity (U) 
[m/s] Density (ρ) [Kg/m3]

Adiabatic 
compressibility (K)  

×10-10 [Pa-1]

1. PFD (C10F18) 636.2455 1930.00 12.7995070

2. DMF+CBZ (100 mg) 1345.8536 956.8404 5.76985441

3. DMF+CBZ (100 mg)+10 ml C10F18 1409.8712 1123.7762 4.47673402

4. DMF+BDZ (100 mg) 1227.6678 966.3566 6.86595342

5. DMF+BDZ (100 mg)+10 ml C10F18 1296.9243 1093.2526 5.43813802

TABLE 1: ULD DATA

Fig. 1: UV spectrum of BDZ in DMF at high concentration (1 mmol)
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Fig. 2: UV spectrum of BDZ in DMF at low concentration (0.1 mmol)

Fig. 3: UV spectrum of CBZ in DMF at high concentration (2 mmol)

Fig. 4: UV spectrum of CBZ in DMF at low concentration (0.2 mmol)
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of both CBZ and BDZ each. This mixture has been 
sonicated at 40 % amplitude and 5 KHz frequency for 
5 min at a time interval of 1 min. At most care has been 
taken to reduce the heat by using dry ice cage. The 
emulsion formed is preserved at -10° in a cryostat for 
5 d. On the 6th d a part of the emulsion is diluted to low 
concentration. Again UV-VIS, fluorescence and ULD 
studies are performed. The images are presented in  
fig. 7- fig. 10 and in Table 1. In third step, the emulsion 
is placed for slow evaporation process at 313 K. The 
obtained powder is subjected for scanning electron 
microscope (SEM) analysis. The results are reported in 
fig. 11 and fig. 12.

Apparatus:

The UV-VIS spectrophotometer is a 20-1950-91-
0029 made with a spectral bandwidth of 2.00 nm is 
used. The fluorescence spectrophotometer is high 

sensitive RF-5301-EM made with a scan range of  
300.00 nm–500.00 nm. The ULD diffractometer used is 
of Holmarc-international made. The frequency ranges 
from 3-10 MHz and the laser wavelength is 6000 nm. 
The ultrasonic-homogenizer is of PCI international 
made with a sweep frequency of 1-10 KHz containing 
a platinum probe. The scanning electron microscopy-
energy dispersive x-ray spectroscopy (SEM-EDS) 
analysis was performed in TESCAN microscope at 
the operating voltage of 10-20 kV. The images were 
processed with Vega 3 software system and then 
probed[32]. 	

RESULTS AND DISCUSSION

The UV-VIS and fluorescence images presented in  
fig. 1-fig. 6 are highly encouraging. The wavelength 
of pure CBZ and BDZ correlates nicely with standard 
results though the solvent chosen is DMF. There is a 

Fig. 5: Fluorescence spectrum of BDZ in DMF

Fig. 6: Fluorescence spectrum of CBZ in DMF
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Fig. 7: UV spectrum of CBZ+C10F18 emulsion (with sonication) 

Fig. 8: UV spectrum of BDZ+C10F18 emulsion (with sonication)

Fig. 9: Fluorescence spectrum of BDZ+C10F18 (sonicated emulsion)
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Fig. 10: Fluorescence spectrum of CBZ+C10F18 (sonicated emulsion) 

Fig. 11: SEM image of CBZ with PFD (C10F18) emulsion

Fig. 12: SEM image of BDZ with PFD (C10F18) emulsion 
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huge difference in the peak height at high concentration 
as expected[33,34].

Fig. 7-fig. 10 represents the UV-VIS and fluorescence 
images of diluted emulsion (sonicated). The 
pronounced increase in the width of the peak indicates 
the occupancy of the fluorine and carbon. Further there 
is a steep raise in the peak height indicating the increase 
in atomic content of both drug and PFD. Both CBZ and 
BDZ have got a high tendency to accommodate any 
fluorine compounds for that matter, C10F18 in this case. 
The images of fluorescence also back up these features. 
The neighbouring peak of the principle maximum is a 
clear indication.

Due to its structure PFD is insoluble in water and 
DMF. It has lower diffusion coefficient and higher 
interfacial tensions[35,36]. On the other hand, CBZ and 
BDZ too are less soluble in water. But they are highly 
soluble in DMF. Hence when dissolved in DMF they 
should possess higher diffusion coefficient and lower 
interfacial tensions. This is in absolute contrast to 
PFD. This behaviour favours much for the presence 
of adequate fluorine and the drug together for longer 
period of time. The high oxygen dissolving capacity 
of PFD too is well reflected in the constant value of 
absorption over a long wavelength. The same is the 
case in fluorescence intensity images too.

ULD study is carried out here. Table 1 presents 
the ultrasonic velocity and compressibility of PFD 
exclusively and for the diluted emulsions of both 
CBZ+PFD and BDZ+PFD. A drastic increase, almost 
twice, could be observed in the velocity. Since, the 
compressibility β=1/U2ρ, the value of β has reduced to 
half, indicating the reduction in molecular interaction 
energies[37,38]. Hence the feasibility of both the drug and 
PFD existing together in the form of emulsion for a 
longer period of time is substantiated.

SEM images represent morphology and confirm the 
shape and size of the particles. Fig. 11 represents the 
SEM images of CBZ with PFD emulsion and fig. 12 
represents the BDZ with PFD emulsion. In the case 
of CBZ, the particle diameter ranging from 10.06 
nm–52.53 nm (fig. 11) is an excellent evidence for 
the hydrogen through fluorine, whereas, BDZ tends 
to bond with PFD to a greater extent. The diameter 
of 200.68 nm (fig. 12), though it is reasonably high, 
this could be an indication of greater accumulation of 
fluorine and carbon atoms along with the components 
of drug. Probably this could be the expected tendency 
and result. This supports not only smooth transport 
behaviour but also the excess oxygen uptake by the 

system/drug throughout the transvascular route. This 
behaviour of the drug along with PFD supports neuro-
lung protective strategy. This in turn enhances the 
activity of the AEDs.

All these results presented were to identify the presence 
of adequate fluorine atoms, carbon content and the 
components of the drug together in a single emulsion. 
Studies made seem to support the basic expectation of 
coexistence of both drug and fluorine atoms together to 
ensure both the oxygen discharge and the antiepileptic 
activity.

In conclusion, the expectation of PFD along with any 
of the AEDs as a single organised crystal with a definite 
structure is far-fetched. This is because of the basic fact 
that PFD possess a highly neutral structure. But its high 
electro negativity helps to co-exist with any chosen 
antiepileptic drug. The incorporation of one or more 
fluorine atoms into a compound can have a dramatic 
effect on its chemical and physical properties and 
fluorinated molecules are of considerable importance in 
a wide range of industries including pharmaceuticals, 
agrichemicals, medical imaging, plastics, polymers and 
electronics. However the synthesis of these important 
molecules is fundamentally difficult due to the high 
reactivity of fluorinating agents. Hence the attempt 
to come out with a neuro-lung protective strategy, 
that involves enrichment of both seizures and lungs 
with oxygen content through the support of PFD (an 
excellent oxygen carrier) C10F18 (PFD) along with 
an enhancement in the antiepileptic activity should 
complement the control of prolonged and harmonic 
vibrations specifically in Lennox-Gastaut type of 
seizures.
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