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This study proposes a novel approach to drug response prediction by incorporating pharmacological mechanisms 
into graph convolutional networks. The developed model, termed pharmacological knowledge graph convolutional 
network, leverages prior knowledge of drug-target interactions, pharmacokinetics, and pharmacodynamics to 
improve both the accuracy and interpretability of predictions. By integrating comprehensive pharmacological 
datasets such as DrugBank and the Cancer Genome Atlas, the pharmacological knowledge graph convolutional 
network model demonstrates enhanced predictive capabilities, outperforming baseline models that lack prior 
knowledge integration. Experimental results highlight the potential of this approach in advancing personalized 
medicine and drug repurposing strategies by offering deeper insights into drug mechanisms across diverse 
biological contexts. Pharmacological knowledge graph convolutional network’s ability to predict drug responses 
accurately underscores its utility in the development of tailored therapeutic interventions and the acceleration of 
new drug discoveries.
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The era of precision medicine has ushered in the need 
to unravel the complex dynamics of drug responses, 
which are characterized by significant inter-
individual variability. The heterogeneity in patient 
responses to therapeutics is driven by an intricate 
array of factors, including genetic polymorphisms, 
environmental exposures, and the multifaceted 
nature of drug-drug and drug-disease interactions. 
The complexity of these determinants has rendered 
conventional approaches to predicting drug responses 
inadequate, necessitating a more sophisticated model 
that integrates pharmacological knowledge[1].
In recent years, Graph Convolutional Networks 
(GCNs) have demonstrated substantial potential 
in handling non-Euclidean data structures, 
particularly in the context of biological networks. By 
leveraging the graph-based representation of drug-
target interactions, pharmacokinetics (absorption, 
distribution, metabolism, and excretion), and 
pharmacodynamics (mechanisms of action and 
dose-response relationships), GCNs provide a 

robust framework for predicting drug efficacy and 
toxicity[2,3].
This study introduces the Pharmacological 
Knowledge Graph Convolutional Network 
(PKGCN), a novel model that incorporates rich 
pharmacological prior knowledge into the GCN 
architecture to enhance drug response prediction. 
The PKGCN model leverages known drug-
target interactions, pharmacokinetic profiles, and 
pharmacodynamics effects to improve predictive 
accuracy and interpretability. This approach allows 
for a more informed understanding of drug actions 
across various biological contexts, paving the way 
for applications in personalized medicine and drug 
repurposing[4,5]. In addition to applying PKGCN to 
pharmacological datasets such as DrugBank and The 
Cancer Genome Atlas (TCGA), this study assesses 
the model’s performance across different therapeutic 
classes. By integrating these diverse datasets, 
PKGCN demonstrates its potential to generalize 
across various pharmacological scenarios, thereby 
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offering significant improvements in the prediction 
of drug responses and enabling more personalized 
and targeted therapeutic strategies[6].
As the volume and complexity of biological data 
increase, traditional machine learning approaches 
struggle to capture the intricate relationships 
inherent in drug responses. Machine learning 
algorithms such as Support Vector Machines (SVM) 
and Random Forests (RF) have demonstrated some 
utility in this field but are often limited by their 
inability to effectively model non-linear, graph-based 
relationships present in biological networks[7,8]. Deep 
learning and specifically GCNs, offers a solution by 
enabling the integration of both graph-structured and 
feature-based data, leading to improved performance 
in drug response prediction tasks[9].
Previous studies have highlighted the efficacy of 
GCNs in various biomedical applications, including 
disease classification and biomarker discovery. 
However, these models often overlook critical 
pharmacological information such as drug-target 
interactions, metabolic pathways, and dose-response 
relationships, which are essential for accurate 
drug response predictions[10]. The incorporation 
of pharmacological knowledge into GCNs could 
significantly enhance the model’s ability to predict 
drug efficacy and toxicity, making it a valuable tool 
in the development of personalized treatments[11,12].
In this study, we propose the development of the 
PKGCN to address the limitations of existing 
models. The PKGCN model integrates prior 
pharmacological knowledge at multiple levels, 
utilizing drug-target interactions, pharmacokinetic 
data, and pharmacodynamics mechanisms to 
improve prediction accuracy. By incorporating this 
knowledge into the graph convolutional layers and 
pooling mechanisms, the PKGCN model can better 
capture the complex interplay between drugs and 
biological systems, leading to more accurate and 
interpretable predictions[13-19].

MATERIALS AND METHODS  

The functional Magnetic Resonance Imaging (fMRI) 
datasets:

fMRI is utilized as a cerebral imaging method for 
analysing brain functions. Within fMRI datasets, 
brain volume is segmented into tiny cubic units 
referred to as voxels. A time series is extracted from 
each voxel by monitoring its activity over time, 
constituting the Blood Oxygen-Level Dependent 

(BOLD) signal. The application of fMRI technology 
during the performance of a specific task is termed 
task-fMRI, while imaging during resting periods is 
referred to as resting-state fMRI (rs-fMRI). Both 
task-fMRI and rs-fMRI are widely used to analyse 
brain disorders.
The fMRI data utilized in this paper was sourced from 
the publicly available Autism Brain Imaging Data 
Exchange (ABIDE) dataset. The ABIDE initiative 
comprises of two extensive collections; ABIDE 
I and ABIDE II. Our study focused on modelling 
and used the pre-processed ABIDE I dataset[20]. The 
ABIDE I dataset consists of 1112 samples, including 
539 individuals with Autism Spectrum Disorder 
(ASD) and 573 typical controls from 16 international 
imaging sites. The pre-processing of the dataset 
was conducted using the Configurable Pipeline 
for the Analysis of Connectomes (CPAC), which 
includes various pre-processing steps such as motion 
correction, anatomical/functional coregistration, 
spatial normalization, spatial and temporal filtering, 
tissue segmentation, slice-timing correction, 
several variations of nuisance signal removal, and 
volume censoring (motion “scrubbing”). After pre-
processing, the effective sample size was reduced to 
871. The dataset includes structural and resting-state 
functional MRI data, along with a comprehensive 
array of phenotypic information, as illustrated in 
Table 1.

Prior knowledge:

Prior knowledge related to fMRI and mental disorders 
encompasses various aspects, including changes in 
brain tissues, alterations in the activation of specific 
brain regions, disruptions in connectivity between 
brain regions, and other symptoms attributed to 
the disorder. Our emphasis is on the disorder of 
Functional Connectivity (FC) and the involvement of 
Reactive Oxygen Intermediates (ROIs), as increasing 
evidence in indicates that ASD is characterized by 
connectivity abnormalities[21]. Taking into account 
the information presented above, prior knowledge 
related to ASD can be broadly categorized into ROI 
activation alterations in connectivity patterns between 
ROIs. Through a comprehensive review of existing 
research findings on ASD, we aim to synthesize 
and consolidate prior knowledge pertaining to this 
disorder (Table 2).
Before delving into the details, it is crucial to 
acknowledge that the information presented below 
pertains to the most common diagnostic features or 
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connectivity. The figure illustrates that individuals 
with ASD often exhibit heightened activity in the 
default network, encompassing the medial Prefrontal 
Cortex (mPFC), Posterior Cingulate Cortex (PCC)/
Precuneus (PCu), inferior parietal lobe, lateral 
temporal cortex, and hippocampus, even during 
periods of rest[22]. 

biomarkers of ASD as delineated in numerous papers. 
However, these findings may not be universally 
applicable to individuals with more specific or 
rare symptoms. In fig. 1, different colours of nodes 
represent distinct functional brain regions, with the 
size of the nodes indicating the degree of association 
with ASD. Thin lines denote under-connectivity 
between brain regions, while thick lines signify over-

Data sources Samples (ASD/
control) Age Gender (male/

female) FIQ VIQ PIQ

CALTECH 19/19 17.0-56.2 30/8 93.0-134.0 80.0-135.0 84.0-129.0

CMU 14/13 19.0-40.0 21/6 95.0-134.0 89.0-132.0 92.0-129.0

KKI 22/33 8.1-12.8 42/13 69.0-131.0 / /

LEUVEN 29/35 12.1-32.0 56/8 89.0-146.0 50.0-136.0 74.0-155.0

MAX_MUN 24/33 7.0-58.0 50/7 79.0-133.0 / 83.0-126.0

NYU 79/105 6.5-39.1 147/37 76.0-148.0 73.0-143.0 67.0-149.0

OHSU 13/15 8.0-15.2 28/0 69.6-132.0 / /

OLIN 20/16 10.0-24.0 31/5 71.0-135.0 / /

PITT 30/27 9.3-35.2 49/8 81.0-131.0 81.0-132.0 83.0-128.0

SBL 15/15 20.0-64.0 30/0 95.0-125.0 93.0-133.0 84.0-135.0

SDSU 14/22 8.7-17.2 29/7 81.0-141.0 83.0-147.0 81.0-140.0

STANFORD 20/20 7.5-12.9 32/8 78.0-148.0 67.0-149.0 81.0-157.0

TRINITY 24/25 12.0-25.9 49/0 72.0-135.0 81.0-137.0 63.0-132.0

UCLA 62/47 8.4-17.9 96/13 64.0-132.0 59.0-132.0 72.0-132.0

UM 68/77 8.2-28.8 117/28 76.0-147.5 75.0-180.0 59.0-148.0

USM 58/43 8.8-50.2 101/0 65.0-148.0 55.0-140.0 72.0-155.0

YALE 28/28 7.0-17.8 40/16 41.0-141.0 42.0-143.0 37.0-139.0

TABLE 1: DEMOGRAPHIC INFORMATION OF ABIDE I DATASET

SVM RF CNN MLP GCN GAT GraphSAGE PKGCN

Accuracy (%) 54.86 58.29 65.41 63.38 67.92 76.10 78.50 90.36

F1 (%) 53.89 56.29 68.36 76.54 74.92 76.02 75.56 85.85

Precision (%) 58.44 57.32 75.00 86.11 69.06 75.34 74.84 89.11

Recall (%) 50.00 55.56 61.93 68.89 81.90 78.73 78.31 88.18

TABLE 2: COMPARISON OF THE CLASSIFICATION PERFORMANCE

Fig. 1: Important ROIs and FC in prior knowledge
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of ROIs is n and varies depending on the brain 
atlas and parcellation method used, which can be 
considered as vertices. For example, the Harvard-
Oxford atlas from FSL contains 97 ROIs[25], while the 
Multi-Subject Dictionary Learning (MSDL) brain 
Probabilistic atlas provided by has 39 ROIs[26]. The 
edges in the graph represent connections between 
ROIs and are assigned an edge weight, if there is 
an edge from vertex Vi to vertex Vj. The graph is 
characterized by two matrices; the adjacency matrix 
Eadj, which displays the network structure, and the 
edge weight matrix Ew, which shows connectivity 
strength. FC between ROIs can be calculated with 
different methods, such as covariance, correlation, 
partial correlation, tangent or precision[27-30].
In GCNs, each node has its own node features. For 
brain networks, the BOLD time series signal data 
ST can be the node features. In brain applications, 
the node feature could be the maximum, minimum, 
mean, variance, standard deviation, mode, median 
and any other evaluation indicators that can reveal the 
characteristics of BOLD signal of Vi. Assuming that 
every node Vi has m features, except the statistical 
indicators of distribution, then the node features 
of Vi. To unify node feature space, assume that the 
whole time period of Vi BOLD signal is t, we set an 
adaptive time window to achieve this. 

Prior knowledge modelling:

Given the considerable number of studies about ASD 
biomarkers, two types of prior knowledge, abnormal 
brain areas and brain connectivity, can be abstracted 
as nodes and edges in a graph. For convenience, 
abnormal brain areas can be named as hv, which 
is a set of k elements. Similarly, abnormal brain 
connectivity can be expressed as a set with size m, 
denoted as he. 

PKGCN model:

In contrast to the existing GCN framework mentioned 
above, the PKGCN implements different weights for 
nodes and incorporates edge weights by employing 
a Multi-Layer Perceptron (MLP). These weights are 
then utilized in graph convolutional layers during 
training. In the pooling layers, TopK pooling is 
applied to consider both node features and graph 
topology. Finally, a readout layer is used to integrate 
the embedding node features into a form that can 
be processed by a graph classifier. The complete 
architecture of the PKGCN model is illustrated in 
fig. 2-fig. 4.

Many of these areas also exhibit abnormal 
connectivity with one another. Compared to the 
control group, the ASD group tends to have weaker 
FC between regions such as the PCC and superior 
frontal gyrus, the frontal lobe and the parietal lobe, 
the anterior cingulate gyrus region and the posterior 
cingulate gyrus, and the left para hippocampal gyrus 
and middle prefrontal cortex. Discovered that the 
ASD group exhibits stronger connectivity between 
regions such as the PCC and the right temporal lobe, 
the PCC and right para hippocampal gyrus, the right 
parietal lobe and the prefrontal region, posterior 
occipital and temporal cortices[23].

GCNs:

The graph neural network was introduced as a 
solution for analysing non-Euclidean data samples. 
Traditional machine learning and artificial neural 
networks such as Convolutional Neural Network 
(CNN)[24] or Recurrent Neural Network (RNN) are 
effective in Euclidean spaces like language and 
images but not suitable for graph data. Graph neural 
networks have emerged as a promising solution for 
processing non-Euclidean data, including knowledge 
graphs, social networks, biological networks, 
chemical structures, etc. These networks are quickly 
gaining widespread usage and effectiveness. 

Methods:

Previous studies analysing fMRI data for brain 
disorder classification using GCN treated all nodes 
as identical, assigning them the same embedding 
algorithm. This approach proved to be problematic 
with the human brain, where nodes can vary 
significantly. Even with Graph Attention Networks 
(GATs) highlighting node differences, the model’s 
theoretical interpretability needed verification. In 
contrast, our proposed GCN framework includes a 
prior knowledge attention graph convolutional layer 
and a Prior Knowledge Aware pooling layer (PKA 
pooling), emphasizing node differences and prior 
knowledge to enhance the model’s results. This 
approach differs from previous work and shows 
promising potential for improving brain disorder 
classification.

Brain representation in graph:

In graph theory, a graph is defined as a collection 
of vertices and edges. To apply this concept to brain 
connectivity, we identify regions of interest (ROIs) 
of the brain as vertices in the graph. The quantity 
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(*) symbol on the arrow signifies the repetition of 
graph convolutional and pooling layers.
The classification on graphs depends on the three 
layers in PKGCN; graph convolutional layers, 
node pooling layers and a readout layer. The graph 
convolutional layer, PKGConv, probes the graph 
structure using edge features, the pooling layer 

The inputs include the prior knowledge matrix, and 
the graph data, such as graph structure, node features 
and edge weights. The MLP computes the node 
weights as shown in box labelled ‘MLP’, and these 
weights will train in PKGConv as shown in pink box. 
In yellow box, it is the modified TopK Pooling layer 
and the readout layer is in orange box. Notably, the 

Fig. 2: The overview of PKGCN model

Fig. 3: The impact of the parameter Gamma (λ) in the loss function on the performance of PKGCN and GCN
Note: ( ): GCN and ( ): PKGCN

Fig. 4: Accuracy of GCN and PKGCN
Note: ( ): PKGCN and ( ): GCN
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an adaptation of the loss function is essential for 
optimal results. The designed loss function consists 
of several components, each contributing to the 
overall objective with varying weights. 

Unit loss:

As mentioned earlier, the factor influenced by 
prior knowledge, w(l) is calculated by MLP, and 
the pooling score was computed . This calculation 
involves multiple parameters, which may lead to 
an ambiguous situation where inputs from different 
samples have the same value of w(l).To avoid this 
situation, a unit loss is employed based on the idea 
of a unit vector. 

Prior Knowledge Prefer Loss (PKP-loss):

The PKP-loss is introduced to impose constraints on 
different samples, serving two objectives. Firstly, it 
encourages the selection of similar ROIs, especially 
those outlined in prior knowledge, across various 
samples. Secondly, it regulates the loss of the ROIs 
specified in the prior knowledge. If, after the first 
pooling layer, the selected ROIs in different samples 
have no duplicate elements, the model’s design 
becomes futile. Consequently, in the PKGCN model, 
the PKP-loss is designed to compel the model to 
choose similar ROIs, particularly those in the prior 
knowledge, after the first Top-K pooling layer. 

RESULTS AND DISCUSSION
To systematically evaluate the performance of the 
PKGCN model in predicting drug responses, we 
conducted a series of experiments. Our experiments 
were designed to compare the predictive accuracy of 
PKGCN with established baseline models, including 
traditional machine learning algorithms and other 
graph-based neural network approaches. We selected 
these baseline models for their prevalence in the 
field and their ability to serve as a benchmark for 
the innovative aspects of PKGCN. The dataset was 
split into training, validation, and test sets to ensure 
the robustness of our findings. We meticulously 
trained the PKGCN model, tuning its parameters to 
optimize performance while avoiding overfitting. 
Throughout the training process, we monitored the 
model’s convergence and predictive accuracy on the 
validation set (fig. 5).
Post-training, we analysed the predictions made by 
the PKGCN model and correlated them with existing 
pharmacological data. This analysis was pivotal in 
understanding the model’s predictive capabilities 

reduces the nodes, and the readout layer summarizes 
the features. The node features can be embedded into 
a low-dimensional space by the weight factor (w) 
computed by the input and prior knowledge with MLP 
during this process. Finally, the summarized vector 
is fed into an MLP to achieve the final classification 
result.

PKA pooling:

Due to the multi dimensions of node features, pooling 
layers will implement features dimensionality 
reduction to reduce training complexity. Moreover, 
pooling layers optimize graph representation 
through selection, reduction and connection steps for 
downstream tasks such as graph classification.
As previously discussed, certain brain regions are 
more indicative of brain disorder diagnosis. Thus, 
these ROIs should be retained in the subsequent steps 
even after the pooling layers. In other words, these 
ROIs will act as super nodes and will occupy a larger 
proportion in subsequent training. Following the 
design of TopK Pooling, the preserved nodes after 
the PKA Pooling layer should meet the conditions 
that the scores of these nodes should be ranked high. 
In essence, the learnable vector w of lth layer can 
project the node features matrix to a normalized 
One-Dimensional (1D) representation for each node, 
resulting in the score vectors. After this, we obtain a 
ranking node list, and the top nodes from this list can 
be sampled to implement graph node reduction. 

Readout layer:

At last, a readout layer is needed to turn the preserved 
information into an appropriate presentation that can 
be processed by MLP layers for the final prediction 
result.

Loss function:

The learnable vector p, which is associated with the 
prior knowledge and incorporated into the graph 
representation at the PKGconv layer, necessitates 
a redesign of the loss function. This modification 
aims to regulate the training process and mitigate 
the introduction of ambiguous values. The detailed 
elements of the loss function definition are expounded 
below.

Cross entropy loss:

The cross-entropy loss serves as the primary loss 
function for training the model. However, given 
the additional factors introduced into the model, 
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associated with specific drug responses. These 
findings were in concordance with established 
pharmacological knowledge, thereby validating the 
biological relevance of the model’s predictions. The 
identification of these biomarkers and pathways 
also provided novel insights into the mechanisms 
of drug action, offering potential avenues for drug 
repurposing and the development of targeted 
therapies (fig. 6).

and its alignment with known biological mechanisms 
of drug action. Our results revealed that the PKGCN 
model demonstrated a significant enhancement 
in predictive accuracy compared to the baseline 
models. The incorporation of pharmacological 
prior knowledge into the model’s architecture 
allowed for a more nuanced understanding of 
drug responses, leading to improved predictions. 
Furthermore, the analysis highlighted the discovery 
of biomarkers and pathways that were significantly 

Fig. 5: Accuracy of different classifiers
Note: ( ): SVM; ( ): RF; ( ): CNN; ( ): MLP; ( ): GAT and ( ): PKGCN

Fig. 6: The highlighted biomarkers in PKGCN
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the process of drug discovery and optimization of 
treatment strategies.
Bringing PKGCN into clinical practice introduces 
certain challenges, including the need for 
comprehensive and high-quality pharmacological 
datasets. The model’s success is dependent on the 
accuracy and completeness of input data, especially 
regarding drug-target interactions. In clinical 
settings, the integration of patient-specific data, such 
as genetic profiles, will be crucial for optimizing 
the model’s predictions. Moreover, there is a need 
for user-friendly interfaces to facilitate the adoption 
of PKGCN by clinicians. Developing tools that can 
seamlessly integrate with existing clinical systems 
will be key to translating PKGCN into everyday 
medical practice, ultimately enhancing decision-
making in personalized therapy and accelerating the 
drug development process.
While PKGCN demonstrates significant promise, it 
has some limitations. The model’s reliance on the 
availability and completeness of pharmacological 
data can impact its accuracy, especially in cases where 
drug-target interactions or metabolic pathways are 
under-characterized. Additionally, the complexity of 
the PKGCN model presents challenges in terms of 
computational efficiency, particularly when scaling 
to large datasets. To address these limitations, future 
research could focus on optimizing the model’s 
architecture for greater scalability while maintaining 
high predictive accuracy.
Moreover, expanding the model’s application beyond 
pharmacology to include other therapeutic areas and 
integrating more diverse data types, such as patient-
specific genetic and environmental factors, would 
further enhance its utility. As PKGCN evolves, 
future work should also explore novel optimization 
techniques and regularization strategies to prevent 
overfitting, particularly with complex, large-scale 
data. Another promising direction is the development 
of user-friendly interfaces that allow clinicians to 
interact with the model more intuitively, facilitating 
its integration into clinical workflows.
Our research presents the PKGCN model, an innovative 
framework that integrates rich pharmacological 
prior knowledge to predict drug responses with 
enhanced accuracy and interpretability. This model 
represents a significant advancement in the field of 
pharmacology by providing a nuanced understanding 
of drug actions and interactions. The key findings of 
our study underscore the importance of incorporating 

An important aspect of PKGCN is the integration of drug 
mechanisms, particularly through the incorporation 
of drug-target interactions and pharmacokinetics/
pharmacodynamics data. By embedding these 
interactions into the graph convolutional layers, the 
model captures the biological pathways that drugs 
engage with, optimizing predictive performance. 
For example, in the case of anti-cancer drugs with 
complex mechanisms, the PKGCN model considers 
how the drugs interact with specific biological 
pathways, influencing key targets like enzymes or 
receptors. This enhances the model’s ability to align 
its predictions with actual experimental data, offering 
improved accuracy in forecasting drug responses in a 
clinical setting.
We applied PKGCN to several anti-cancer drugs, 
which involve intricate mechanisms such as multi-
target interactions or modulation of immune 
responses. Through case studies, we observed 
that PKGCN was able to predict responses more 
accurately than traditional models. For instance, 
when predicting the response to kinase inhibitors, 
the model successfully aligned predicted outcomes 
with known experimental data. This demonstrates 
the model’s effectiveness in dealing with complex 
pharmacological profiles, reinforcing its practical 
applications in oncology.
PKGCN’s performance was benchmarked against 
other well-established pharmacological models, 
such as those available in DeepChem. By integrating 
pharmacological prior knowledge, PKGCN 
consistently outperformed traditional GCN models 
and other machine learning approaches. Specifically, 
we compared PKGCN with existing models on 
DrugBank and TCGA datasets, where PKGCN 
demonstrated superior accuracy and robustness in 
predicting drug responses. This further highlights 
PKGCN’s advantage in modelling drug mechanisms 
and applying them to real-world pharmacological 
data.
The potential of PKGCN extends to personalized 
medicine, where individual patient profiles, including 
genetic data and drug interactions, can be leveraged to 
tailor therapies. PKGCN facilitates this by predicting 
how a specific drug will behave in a patient based 
on their unique biological makeup. Additionally, the 
model shows promise in drug repurposing, where it 
can identify new therapeutic uses for existing drugs 
by analysing their effects across different biological 
networks. This capability can significantly accelerate 
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drug-target interactions, pharmacokinetics, and 
pharmacodynamics into predictive models. The 
PKGCN model’s ability to leverage this knowledge 
results in a substantial improvement in predictive 
performance, offering a more precise tool for drug 
response prediction.
The novel aspects of the PKGCN model, including the 
use of a multilayer graph convolutional network with 
attention coefficients derived from prior knowledge, 
a prior knowledge-aware pooling layer, and an 
adjusted loss function, have collectively contributed 
to its success. These features have been instrumental 
in refining the model’s output and ensuring that it 
aligns with established pharmacological principles.
Looking ahead, the potential applications of the 
PKGCN model are vast and promising, particularly 
in the realms of drug discovery and personalized 
medicine. The model’s capacity to predict 
individualized drug responses can facilitate the 
development of tailored treatment plans, thereby 
personalizing healthcare to an unprecedented 
degree. Furthermore, its ability to identify significant 
biomarkers and pathways may accelerate the 
identification of new drug targets and the repurposing 
of existing drugs for novel therapeutic indications. As 
we move forward, the PKGCN model’s application 
to more complex datasets and diverse therapeutic 
areas will be crucial. We anticipate extending its use 
beyond the current scope to encompass a broader 
range of pharmacological data. This includes 
integrating patient-specific genetic information and 
environmental factors, which could further enhance 
the model’s predictive capabilities and applicability 
in real-world clinical settings. In conclusion, the 
PKGCN model represents a transformative tool in 
pharmacology, with the potential to reshape drug 
response prediction and contribute to the advancement 
of personalized medicine. Its successful integration 
of prior knowledge and GCNs marks a significant 
step towards more accurate, efficient, and patient-
centred therapeutic strategies.
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