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Liu et al.: Infants with Bronchopulmonary Dysplasia: Review and Meta-Analysis 
There is controversy about the changes of intestinal and respiratory microbiota characteristics in patients 
with bronchopulmonary dysplasia and some studies have reported inconsistent or even contrary results. 
We performed a meta-analysis to explore the characteristics of the respiratory tract and gut microbiota 
in preterm infants with bronchopulmonary dysplasia. A complete search of the database (last updated on 
September 1, 2023) was conducted based on the preferred reporting project statement for systematic review 
and meta-analysis to identify eligible case-control studies that tested the gut and respiratory tract microbiota 
of patients with bronchopulmonary dysplasia. The results of meta-analysis were expressed as effect size 
and 95 % confidence interval. The bias control was assessed using Newcastle-Ottawa scale and funnel plot 
analysis. Seven studies (Newcastle-Ottawa scale score range from 6-8) were included, three studies (n=76, 
observation group n=36/control group n=40) collected intestinal microbial samples, and four studies (n=98, 
observation group n=46/control group n=52) collected respiratory tract microbial samples. The results showed 
that the richness and diversity of respiratory tract and intestinal microbial communities were decreased in 
bronchopulmonary dysplasia patients. In this meta-analysis, we analyzed the characteristics of respiratory 
tract and intestinal microbiota in premature infants with bronchopulmonary dysplasia, and found that 
the abundance and diversity of respiratory tract and intestinal microbiota in bronchopulmonary dysplasia 
patients were reduced. The intestinal microflora of Firmicutes, Actinobacteria, Veillonella and Escherichia/
Shigella in premature infants with bronchopulmonary dysplasia increased. Proteobacteria, Bacteroidetes, 
Cyanobacteria, Enterococcus, Enterobacteriaceae and Streptococcus were reduced. Firmicutes increased in the 
respiratory tract of premature infants with bronchopulmonary dysplasia, while Proteobacteria, Bacteroidetes 
and Cyanobacteria decreased. In addition, the characteristics of respiratory microbiome in premature infants 
with bronchopulmonary dysplasia may be affected by region or race.
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Bronchopulmonary Dysplasia (BPD) is the most 
common chronic lung disease of preterm infants[1], 
and preterm infants with BPD may experience 
various long-term lung complications, such as 
asthma, respiratory infections, and low exercise 
capacity[2-7]. It is most common in premature infants 
who have received mechanical ventilation and 
supplemental oxygen for a long time[8,9]. Premature 
infants may develop respiratory failure due to 
different reasons, such as Respiratory Distress 
Syndrome (RDS) and Acute Lung Injury (ALI), and 
people have to resort to mechanical ventilation and 
other means to meet their strong ventilation and 
oxygen requirements[10]. BPD is characterized by 
inflammation, alveolar simplification, pulmonary 

microvascular malformation and pulmonary 
hypertension[11]. Studies have pointed out that long-
term assisted ventilation may lead to chronic tissue 
damage of the respiratory tract[12]. Long-term high 
oxygen in the lung due to mechanical ventilation 
is believed to lead to inflammation, destruction of 
blood vessels and alveoli, and is one of the important 
causes of BPD[13]. The pathogenesis of BPD is 
thought to be multifactorial, and it is associated with 
several prenatal and postnatal factors, including 
preterm birth, mechanical trauma, oxygen poisoning, 
infection or inflammation, growth restriction and 
genetic predisposition[14].

Microorganisms play a crucial role in maintaining 
the balance of the human immune response, building 
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barriers, and influencing the development of 
neonatal diseases[15]. There is growing evidence that 
dysregulation of the microbiota may be involved in 
lung inflammation and contribute to the development 
of BPD. The study of Ryan et al.[16] analyzed the 
influence of the composition of intestinal flora on the 
expression of systemic immune genes and found that 
the fecal samples of Escherichia coli and Shigella in 
children with BPD significantly increased compared 
with normal infants. In addition, studies have pointed 
out that the imbalance of respiratory microflora may 
participate in the pathogenesis of BPD and may be 
related to the severity of BPD[17,18]. Therefore, it is 
necessary to explore the intestinal and respiratory 
microbial characteristics of BPD patients as a new 
entry point for future diagnosis and treatment.

At present, there is controversy about the 
characteristics of intestinal and respiratory 
microbiota changes in BPD patients, and some 
studies have reported inconsistent or even contrary 
results. Therefore, we conducted a meta-analysis 
to explore the characteristics of respiratory and gut 
microbiota in preterm infants with BPD.

MATERIALS AND METHODS

This article has been reported in accordance with the 
Preferred Reporting Project and the PRISMA2009 
checklist as stated in the Systematic Review and 
Meta-Analysis (PRISMA) and has been registered 
with the PROSPERO Registry (CRD42023471852)
[19]. We used computers to search all relevant English 
literature in PubMed, Web of Science and Embase 
databases from their establishment to September 1, 
2023 (regardless of region or race). The search terms 
are as follows, BPD (Medical Subject Headings 
(MeSH) terms), lung dysplasia, BPD, dysplasia, 
BPD, 16 s. The search mode is formed by combining 
MeSH subject words with free words. Table 1 shows 
the search process on PubMed. We also searched the 
literature manually with the help of related articles 
functions and reference lists.
TABLE 1: ARTICLE RETRIEVAL PROCESS TABLE

Search PubMed

#1 Bronchopulmonary dysplasia (MeSH Terms)

#2
(Bronchopulmonary dysplasia) or (lung dysplasia) 

or (BPD) or (dysplasia, bronchopulmonary) or 
(bronchopulmonary dysplasia)

#3 (#1) or (#2)

#4 16S

#5 (#3) and (#4)

Research selection:

All studies that explored differences in gut/respiratory 
microbiota between preterm BPD and control preterm 
infants were included in this systematic review and 
meta-analysis. 

Inclusion criteria: Original full-text publications; 
confirmed BPD; the gestational age and sex ratio of 
the children in the control group and the BPD group 
were basically similar; available and sufficient data 
(sample size, mean and standard deviation or any 
data that can be converted) to calculate the Effect 
Size (ES) of the two groups; the study included any 
of the following measures of intestinal/respiratory 
microbiome comparison between BPD infants and 
control infants (1 d postnatal and sampling time 
≤7 d) and Alpha (α) diversity index (Shannon and 
Observed OTUs), phylum level population difference 
and genus level population difference were included. 

Exclusion criteria: Case reports, hypotheses, 
book chapters, conference abstracts, animal or cell 
experiments, reviews; there are other non-BPD 
complications; studies of additional interventions 
for participating infants and extraction of microbiota 
outside the gut/respiratory tract were excluded from 
this study.

Data extraction:

Researchers are responsible for selecting studies and 
extracting data according to pre-set exclusion criteria, 
and any differences are discussed and ultimately 
resolved by both parties. When additional data or 
data transformation is needed, contact the study 
authors via email for assistance. When the authors 
did not reply, the standard statistical formula was 
used for data conversion. If the required data cannot 
be obtained from the authors, the study is excluded. 
We also collected the following characteristic 
information about the included studies. The first 
author; nationality; year of publication; gestational 
age; maternal antibiotic treatment; antenatal steroids; 
cesarean section; duration of parenteral nutrition; 
duration of mechanical ventilation; apgar 1 min; 
apgar 5 min and the above indicators to be studied

Quality assessment:

To assess the risk of bias in each study, the Newcastle-
Ottawa Scale (NOS) was used by two researchers. 
Any differences that arise are discussed and finally 
resolved by the two researchers. NOS is widely used 
to assess the quality of non-randomized studies in 
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systematic reviews/meta-analyses. Using the tool, 
study quality was assessed based on eight items 
divided into three groups; study group selection, 
group comparability (comparability can be given up 
to two stars), and exposure or outcome determination 
for case control or cohort studies. A star rating system 
was used to rate the quality of included studies on a 
scale from 0 (low quality) to 9 (high quality).

Statistical analysis:

We used Engauge Digitizer to extract data, 
representing all bacterial abundance data as mean (x̄) 
and Standard Deviation (SD), and performed a meta-
analysis using STATA/SE 15.0 (StataCorp, Texas, 
USA) with a Meta module for Windows. ES was used 
to evaluate the α diversity of the BPD group and the 
control group and the abundance of different strains, 
with a confidence interval of 95 %. Chi-square 
(χ2) and I2 tests were used for included references. 
When I2<50 % and p>0.1, there was no significant 
heterogeneity in the study and fixed effect model 
could be used for analysis. Otherwise, it indicates 
that there is significant heterogeneity in the study 
and the random effects model is used for analysis. To 
assess the risk of publication bias, a funnel plot was 
performed for intestinal/respiratory microbiota of 
different genera, where publication bias would result 
in an asymmetric funnel plot.

RESULTS AND DISCUSSION

A total of 403 literatures were retrieved according 
to the pre-determined search strategy, as shown in 
fig. 1. Four of additional records identified through 
other sources, 74 duplicates were deleted, and the 
remaining 333 were screened by title and abstract 
review. A total of 309 articles were excluded because 
the type of study did not meet the requirements, 
animal or cell experiments, or were not relevant to this 
study. Among the remaining 24 articles, 17 articles 
were excluded for the following reasons; articles in 
meeting (n=1); not meeting outcomes included in this 
review (n=5) and incomplete data (n=11). Finally, a 
total of 7 literatures were included[20-26]. Additional 
examination of the references listed in these studies 
did not provide any additional eligible studies.
The characteristics of the included studies are shown 
in Table 2 and Table 3. There were 7 literatures 
(n=174, n=82 in the observation group/92 in the 
control group)[20-26], 3 literatures (n=76, n=36 in the 
observation group/40 in the control group) collected 
intestinal microbial samples[20,21,26], and 4 studies 
(n=98, observation group n=46/control group n=52) 
respiratory microbial samples[22-25], 16S ribosomal 
Ribonucleic Acid (16S rRNA) sequencing was 
used in all studies. Four articles were conducted 
in China (including one in Taiwan, China)[20,21,25,26], 
and the other three were from the United States[22], 
Australia[23] and Italy[24].

Fig. 1: PRISMA flow diagram of studies identified in the meta-analysis
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NOS was used for quality evaluation of the included 
studies, as shown in Table 4. The overall quality was 
high (7 marks in 3 studies, 6 marks in 2 studies, 8 
marks in 2 studies, mean±SD: 7±0.82). No studies 
were excluded due to low NOS scores. 
The α diversity index reflects the abundance and 
diversity of microbial communities in a specimen. 
A total of three observed studies provided the 
Shannon index[20,21,26], and two observed Operational 

Taxonomic Units (OTUs) index provided the 
Observed OTUs index[20,21], which compared the ES 
of the two indexes between the BPD group and the 
control group as shown in fig. 2 and fig. 3, respectively 
being 2.27 (95 % Confidence Interval (CI): 0.57, 3.96) 
vs. 3.85 (95 % CI: 0.44, 7.26) and 2119.73 (95 % CI: 
-2842.23, 7081.69) vs. 3284.40 (95 % CI: -3557.73, 
10126.53), we found that microbial abundance and 
diversity were reduced in children with BPD. 

Author Country Year Gestational age (week) Materials and 
methods

BPD 
(male)

Control 
(male) BPD (n) Control 

(n)

Richness 
and 

diversity

Chen et 
al.[20] China 2021 27.5 (27.0-28.75)/27.5 

(27.0-28.75)

Faecal, 
16S rRNA 

sequencing
6 7 8 10

observed 
OTUs/ACE/

Shannon 
index

Li et 
al.[21] China 2022 (26-35) w

Faecal, 
16S rDNA 

sequencing
- - 10 10

Observe/
ACE/

Shannon 
index/
Chao1/
Simpson

Lohmann 
et al.[22] USA 2014 26.2±1.9/28.9±1.4

Tracheal 
aspirates, 
16S rDNA 

sequencing

3 7 10 12

observed 
OTUs/

Shannon 
index

Selway et 
al.[23] Australia 2023 26.4 (±1.7)

Buccal swabs 
and tracheal 

aspirates, 
16S rDNA 

sequencing

- - 20 20 observed/
Faith

Tirone et 
al.[24] Italy 2022 26.5±1.5/26.5±1.5

Bronchoalveolar 
Lavage Fluid 

(BALF), 
16S rDNA 

sequencing

6 7 8 15 Shannon 
index

Xu et 
al.[25] China 2022 30.28±2.22/31.57±0.61

Tracheal 
aspirates, 
16S rDNA 

sequencing

4 4 8 5 Shannon 
index

Zhang et 
al.[26] China 2022 27.4±1.5/29.5±0.9 Faecal,16S rDNA 

sequencing 11 10 18 20 Shannon 
index

TABLE 2: CHARACTERISTICS OF THE INCLUDED STUDIES IN THE META-ANALYSIS

Author Maternal antibiotic 
treatment

Antenatal steroids BPD/
control

Cesarean section BPD/
control

Duration of mechanical 
ventilation (days)

Chen et al.[20] 0 3/5 7/7 -

Li et al.[21] - - - -

Lohmann et al.[22] - - 8/11 -

Selway et al.[23] - - - -

Tirone et al.[24] 3/6 8/13 6/14 20.07±26.91/1.02±1.98

Xu et al.[25] 1/1 6/3 5/5 25.83±8.96/6.17±1.88

Zhang et al.[26] 6/5 12/13 14/17 32.5±17.0/12.9±7.6

TABLE 3: CHARACTERISTICS OF THE INCLUDED STUDIES IN THE META-ANALYSIS
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study that the average abundance of Bacteroidetes 
and Cyanobacteria in the gut of BPD patients was 
lower than that of the control group, 16.3 % vs. 21 % 
and 1.9 % . 2.6 % respectively.
As shown in fig. 9, Firmicutes increased in the 
respiratory tract of BPD patients and ESBPD  

. ES control was 47.19 (95 % CI: -10.90, 105.28) 
vs. 29.95 (95 % CI: 29.52, 30.37). According to fig. 
10, we can learn that Proteobacteria has decreased 
in the respiratory tract of patients with BPD, and 
the ESBPD vs. ES control is 51.22 (95 % CI: -9.19, 
111.63) vs. 76.55 (95 % CI: 41.65, 111.45). Xu et 
al.[25] found in her study that Cyanobacteria was not 
detected in the respiratory tract of BPD patients, 
while the average abundance of Cyanobacteria in the 
control group was about 5.95 %. In addition, Xu et 
al.[25] also found that the proportion of Bacteroidetes 
in the control group (about 1.854 %) was higher than 
that of BPD group (0.206 %).
Among the included articles, two studies each 
analyzed the changes of intestinal microbiota 
and respiratory microbiota in BPD patients[21,26], 
respectively[22,25] including Streptococcus, 
Enterococcus, Veillonella, Escherichia/Shigella, 
Staphylococcus, Enterobacteriaceae and 

Respiratory microorganisms three of the articles 
included in the study provided the Shannon 
index[22,24,25], and two observed OTUs index[22,23], and 
the same conclusion was drawn after comparison, as 
shown in fig. 4 and fig. 5, which were 1.38 (95 % CI: 
1.27, 1.48) vs. 2.20 (95 % CI: -1.27, 5.68) and 17.63 
(95 % CI: 9.02, 26.25) vs. 22.60 (95 % CI: 15.50, 
29.70), found that microbial abundance and diversity 
were reduced in children with BPD.
Among the included articles, two studies 
each analyzed the level changes of intestinal 
microflora[20,26] and respiratory microflora of BPD 
patients[22,25], respectively. These include Firmicutes, 
Proteobacteria, Bacteroidetes, Actinobacteria and 
Cyanobacteria.
As shown in fig. 6 and fig. 7, Firmicutes and 
Actinobacteria have increased in the intestine of 
patients with BPD, and ESBPD vs. ES control is 
39.77 (95 % CI: 29.45, 50.09) vs. 34.87 (95 % CI: 
24.45, 45.30) and 7.35 (95 % CI: -5.67, 20.38) vs. 
2.96 (95 % CI: 2.73, 3.20), while Proteobacteria 
was reduced in the intestine of patients with BPD, 
as shown in fig. 8. ESBPD vs. ES control was 39.82 
(95 % CI: 12.34, 67.31) vs. 50.21 (95 % CI: 5.70, 
94.72). In addition, Chen et al.[20] also found in his 

First 
author

Selectiona Comparabilityb Exposurec Score

1 2 3 4 A B C 8/13

Chen et 
al.[20] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ 8

Li et al.[21] ▲ ▲ ▲ ▲ △ △ ▲ ▲ △ 6

Lohmann, 
et al.[22] ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ △ 7

Selway, et 
al.[23] ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ △ 7

Tirone, et 
al.[24] ▲ ▲ △ ▲ ▲ △ ▲ ▲ △ 6

Xu et 
al.[25] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ △ 8

Zhang et 
al.[26] ▲ ▲ ▲ ▲ ▲ △ ▲ ▲ △ 7

Note: (a): Study population selection; (b): Comparability of cases and controls; (c): Measurement of exposure factors; (1): Is the case 
definition adequate; (2): Representativeness of the cases; (3): Selection of controls; (4): Definition of controls; (A): Ascertainment of 
exposure; (B): Same method of ascertainment for cases and controls and (C): Nonresponse rate

TABLE 4: QUALITY ASSESSMENT OF INCLUDED STUDIES USING THE NOS (CASE-CONTROL STUDIES) 
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Fig. 2: Forest map of alpha diversity differences by Shannon index-I

Fig. 3: Forest map of alpha diversity differences by observed OTUS index-I

Fig. 4: Forest map of alpha diversity differences by Shannon index-II
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Fig. 5: Forest map of alpha diversity differences by observed OTUS index-II

Fig. 6: Meta-analysis comparing the abundance of Firmicutes (gut)

Fig. 7: Meta-analysis comparing the abundance of Actinobacteria (gut)
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Fig. 8: Meta-analysis comparing the abundance of Proteobacteria (gut)

Fig. 9: Meta-analysis comparing the abundance of Firmicutes (respiratory)

Fig. 10: Meta-analysis comparing the abundance of Proteobacteria (respiratory)
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2.37 (95 % CI: 0.18, 4.55). According to fig. 13, it 
can be seen that Enterobacteriaceae was reduced in 
the intestine of patients with BPD, and the ESBPD vs. 
ES control was 3.32 (95 % CI: -2.27, 8.91) vs. 16.74 
(95 % CI: -3.76, 37.23). In addition, we also found 
that in the study of Li et al.[21], the average intestinal 
Streptococcus abundance in BPD patients decreased 
(0.33 % vs. 2.97066 %), while Escherichia/Shigella 

Stenotrophomonas.
As shown in fig. 11, Enterococcus is decreased in the 
intestine of BPD patients, and ESBPD vs. ES control 
is 26.49 (95 % CI: -23.85, 76.82) vs. 34.74 (95 % CI: 
-9.73, 79.20). As shown in fig. 12, Veillonella was 
increased in the intestine of BPD patients, and ESBPD 
vs. ES control was 4.54 (95 % CI: -3.52, 12.61) vs. 

Fig. 11: Meta-analysis comparing the abundance of Enterococcus (gut)

Fig. 12: Meta-analysis comparing the abundance of Veillonella (gut)
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Fig. 13: Meta-analysis comparing the abundance of Enterobacteriaceae (gut)

involving microbial α diversity. According to the funnel 
plot, none of the analyses showed publication bias.
To our knowledge, this is the first meta-analysis to 
look at changes in gut and respiratory microbiome in 
patients with BPD. This meta-analysis included seven 
studies that analyzed gut and respiratory microbiome 
changes in 82 BPD patients and 92 non-BPD control 
infants from four countries. Despite differences in 
gut and respiratory microbiota between individuals, 
this study provides evidence of overall changes in 
gut and respiratory microbiota occurring in patients 
with BPD.
More and more studies on the pneumo-intestinal 
axis theory have shown that intestinal microbes are 
related to lung homeostasis[27], while other studies 
have pointed out that respiratory microorganisms 
may be related to lung inflammation, especially 
BPD[28]. Shannon index and OTUS index can reflect 
the number of species detected in samples (i.e. 
richness) and their relative abundance distribution 
(i.e. evenness). In this study, we observed that the 
Shannon index and OTUS index of children in the 
BPD group were lower than those in the control 
group, indicating that the richness and diversity 
of microbial communities in the respiratory tract 
and intestinal tract were reduced in BPD patients, 
and such differences in alpha diversity may play a 
predictive role in the development of BPD.
Existing studies have pointed out that Actinobacteria, 
Proteobacteria, Bacteroidetes and Firmicutes are the 
four main microbial phyla in the intestinal tract of 
preterm infants[29]. According to the research we 

increased (49.841 % vs. 11.32311 %).
Regarding Staphylococcus, Lohmann et al.[22] and 
Xu et al.[25] showed opposite conclusions. Lohmann 
et al.[22] found that no Staphylococcus was detected 
in the control group. The average abundance of 
Staphylococcus in respiratory tract microbe samples 
of BPD group was 68.879 %. In the study of Xu et 
al.[25], the average abundance of Staphylococcus in 
the samples of children in the control group was 
about 19.1 %, while no Staphylococcus was detected 
in the BPD group. For Stenotrophomonas, Lohmann 
et al.[22] and Xu et al.[25] also proposed the opposite 
view. In Lohmann et al.[22] study, Stenotrophomonas 
was only detected in the samples of children in the 
control group (the average abundance was about 
4.58 %). However, in the study of Xu et al.[25], 
Stenotrophomonas was only detected in the samples 
of children in the BPD group (the average abundance 
was about 20.02 %). At the same time, we found that 
in the study of Xu et al.[25], the average abundance 
of Streptococcus in BPD samples (about 0.1775 %) 
was higher than that of the control group (about 0.09 
%). Enterobacteriaceae has not been detected in 
the control group, while the average abundance of 
Enterobacteriaceae in the BPD group is about 0.6815 
%. In the study of Lohmann et al.[25], we also found 
that the average abundance of Escherichia/Shigella 
in BPD group (about 1.8 %) was lower than that in 
control group (about 9.435 %).
Due to the small number of studies involving 
microbial phyla level and genus level, we only used 
funnel plot to analyze publication bias for studies 
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Lohmann et al.[22] experimental results were contrary. 
We think this may be due to ethnic or regional 
differences between the two studies that may have 
contributed to the differences in the structure of 
the two studies. Our study is the first to explore the 
microbiota characteristics of preterm infants with 
BPD through a meta-analysis and systematic review. 
We also divided them into intestinal and respiratory 
microbiota groups according to different sampling 
sites, trying to compare the changes of respiratory 
microbiota and intestinal microbiota in premature 
infants with BPD. There are some limitations to our 
study. First of all, the research on the microbiota 
characteristics of premature infants with BPD is 
still in its infancy, resulting in fewer studies to be 
included. Secondly, most studies have significant 
heterogeneity, which cannot be eliminated by using 
random effects model. In addition, this study did not 
take into account the impact of ethnic and regional 
differences on the research structure.
In this meta-analysis, we analyzed the characteristics 
of respiratory and intestinal microbiota in premature 
infants with BPD and found that the abundance and 
diversity of respiratory and intestinal microbiota 
in BPD patients were reduced. The intestinal 
microflora of Firmicutes, Actinobacteria, Veillonella 
and Escherichia/Shigella in premature infants with 
BPD increased. Proteobacteria, Bacteroidetes, 
Cyanobacteria, Enterococcus, Enterobacteriaceae 
and Streptococcus were reduced. Firmicutes 
increased in the respiratory tract of premature infants 
with BPD, while Proteobacteria, Bacteroidetes 
and Cyanobacteria decreased. In addition, the 
characteristics of respiratory microbiome in premature 
infants with BPD may be affected by region or race. 
Our research helps to define the characteristics of the 
respiratory and intestinal microbiota of BPD patients 
and provides a basis for the future treatment of BPD 
by regulating the microbiota balance.
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