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Circular RNA is crucial for the development of multiple malignant tumors including colorectal cancer. 
Circular RNA lamin B1 has recently been verified to accelerate colorectal cancer progression. However, it 
is not clear whether circular RNA lamin B1 can be regulated by the main methylase (methyltransferase-
like 3) in colorectal cancer. This study was to explore the mechanism of methyltransferase-like 3-mediated 
epigenetic reactivation of circular RNA lamin B1 in colorectal cancer. We first analyzed the expression and 
correlation between methyltransferase-like 3 and circular RNA lamin B1 in colorectal cancer tissues, and 
then assessed the effects of methyltransferase-like 3 and circular RNA lamin B1 on the malignant properties 
of colorectal cancer cells by conducting loss-of-function and restoration studies. We also examined 
the growth and pathological structures in colorectal cancer xenograft tumors, as well as the levels of 
methyltransferase-like 3, circular RNA lamin B1 and caspase 3 expression in colorectal cancer xenograft 
tumors by reverse transcription-quantitative polymerase chain reaction, western blotting, hematoxylin 
and eosin staining and immunohistochemistry. Our results showed that the levels of circular RNA lamin 
B1 and methyltransferase-like 3 expressions were elevated and positively correlated in colorectal cancer 
tissues. Functionally, methyltransferase-like 3 silencing could prevent colorectal cancer cell proliferation, 
migration and invasion, and facilitate apoptosis in colorectal cancer cells by downregulating circular RNA 
lamin B1. Moreover, we found that knockdown of methyltransferase-like 3 could prevent tumor growth 
and disrupt the histological structure of colorectal cancer xenograft tumors by reducing circular RNA 
lamin B1 expression. Our data confirmed that methyltransferase-like 3 knockdown could attenuate the 
development of colorectal cancer cells by lowering circular RNA lamin B1 expression. This suggests circular 
RNA lamin B1 as a novel oncogene in colorectal cancer, which could be regulated by methyltransferase-
like 3. Methyltransferase-like 3 silencing and circular RNA lamin B1 might be of great significance in 
colorectal cancer therapy. 

Key words: Colorectal cancer, circular RNA lamin B1, methyltransferase-like 3, apoptosis

Colorectal Cancer (CRC) is a common malignant 
tumor[1]. According to statistics, CRC causes nearly 
700 000 deaths each year and the yearly number 
is increasing[2]. CRC is a modern disease with its 
highest incidence in developed countries. The 
current treatments for CRC still consist of surgery, 
supplemented by radiotherapy and chemotherapy[3]. 
Due to its insidious early symptoms, the vast majority 
of CRC patients are initially diagnosed at an advanced 
stage of their disease, where the surgery can longer 
provide a cure[4], the effects of chemotherapy is 
minimal and the overall prognosis is poor. Statistics 

show that the 5 y survival rate of patients with 
stage Ⅳ CRC is only 13.1 %[5]. CRC is caused by 
multiple factors, including intestinal inflammation, 
colorectal adenomas and gut microbiota[6]. The 
pathogenesis of CRC involves multiple mechanisms 
including excessive cell proliferation, increased 
angiogenesis, the acquisition of aggressive cell 
phenotypes, a decrease in cell apoptosis and the 
maintenance of CRC stem cells[7,8]. CRC progression 
typically involves the upregulation of oncogenes 
and downregulation of cancer suppressor genes, and 
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similarly to other solid tumors, CRC is characterized 
by dysregulation in both oncogenes and tumor 
suppressor genes[9]. Therefore, it is imperative to 
search for novel molecular targets for treating CRC.

Circular Ribonucleic Acid (RNA) (circRNA) is 
a new type of RNA that is commonly generated 
from pre-messenger RNA (mRNA) molecules 
by variable shearing and has a closed circular 
structure[10]. CircRNA is highly conserved and is 
abundant and stable in mammals. As endogenous 
RNA molecules, circRNAs are mainly distributed 
in the cytoplasm[11]. Growing evidence indicates 
that circRNA molecules can sponge micro RNAs 
(miRNAs) to prevent the inhibitory effect of 
miRNA on mRNA[12,13]. Studies have shown that 
circRNA plays a key role in cellular functions, 
including protein synthesis, gene expression and 
post-transcriptional modification[14,15]. The study of 
circRNA has become a hot area of research in the field 
of oncology. CircRNAs contribute to tumorigenesis 
and the development of several cancers, including 
cervical cancer[16], lung cancer[17], breast cancer[18] 
and CRC[19], and could possibly serve as a latent 
prognostic markers and have significant clinical 
value in CRC. Several recent studies have examined 
the circRNA expression profiles in CRC tissues by 
the use of circRNA microarray methods[20,21]. Based 
on a literature review, we speculated that circular 
RNA Lamin B1 (circLMNB1) might be a latent 
biomarker for CRC[22]. Furthermore, research studies 
have confirmed that circLMNB1 contributes to CRC 
progression[23]. A review of a circRNA database 
revealed that has_circ_0127801 (circLMNB1) 
is located on chromosome 5 (chr5):126153227-
126153886 with a 659 base pair (bp) spliced length. 
Therefore, we speculated that circLMNB1 might be 
a critical molecule involved in CRC progression. 
However, the mechanism of circLMNB1 in CRC has 
not been elucidated in previous studies.

To explore the function of circLMNB1 on malignant 
biological properties on CRCs and to confirm 
the regulatory effect of Methyltransferase-Like 3 
(METTL3) on circLMNB1 expression, here in this 
study, we confirmed the changes in expression and 
the relevant functions of circLMNB1 in CRC cells 
and the xenograft tumors of CRC model mice. We 
also examined whether the influence of circLMNB1 
on CRC progression could be regulated by N6-
methyladenosine (m6A) modification, which can play 

an indispensable role in the function of circRNA[24,25].

MATERIALS AND METHODS

Patients and samples:

Samples of CRC tissue were obtained from 20 CRC 
patients (age range, 42 to 78 y) who underwent surgery 
at the Renmin Hospital of Wuhan University from 
April 2019 to May 2020. Tissues at the tumor margins 
(3-5 cm) were also collected to serve as non-cancerous 
tissues. The patient inclusion criteria were as follows-A 
verified case of CRC; no other type of colorectal 
disease; no other tumors; no preoperative history 
of chemoradiotherapy. The exclusion criteria were 
pathological diagnosis excluded CRC; complication 
with other tumors; preoperative radiotherapy and 
chemotherapy. The study protocol was approved by 
the Ethics Committee of Renmin Hospital of Wuhan 
University and all patients provided their signed 
informed consent for study participation.

Cell culture:

Human Colon Adenocarcinoma cell line, LoVo 
(CCL-229) and Human Colorectal Carcinoma cell 
line (HCT116 (CCL-247)) cells were obtained 
from the American Type Culture Collection 
(ATCC) (Manassas, Virginia, United States of 
America (USA)). The HCT116 cells were cultured 
in Dulbecco’s Modified Eagle Medium (DMEM) 
(Gibco, Waltham, Massachusetts (MA), USA) 
and the LoVo cells were cultured in Ham’s F-12K 
(Kaighn's) medium (Invitrogen, Waltham, MA. 
USA). Both culture media were supplemented 
with 10 % Fetal Bovine Serum (FBS) (Sigma, St. 
Louis, Missouri (MO), USA) and 1 % Penicillin-
Streptomycin (Solarbio, Beijing, China), and both 
cell lines were grown at 37° in a 5 % Carbon dioxide 
(CO2) atmosphere.

Cell transfection:

An Empty Vector (EV), circLMNB1 overexpression 
plasmid, METTL3 short hairpin RNA (shRNA) (sh 
METTL3) and Negative Control (NC) shRNA were 
obtained from HanBio Biotechnology (HanBio, 
Shanghai, China). METTL3 small interfering 
(siRNA) (si-METTL3) and NC siRNA were obtained 
from GenePharma (Shanghai, China). LoVo and 
HCT116 cells were transfected with the plasmids 
(EV or circLMNB1 overexpression plasmid) or 
oligonucleotides (NC siRNA or si-METTL3) 
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by using LipofectamineTM 3000 (Invitrogen) for 
48 h. METTL3-silencing or/and circLMNB1-
overexpressing HCT116 cells were stably constructed 
by lentivirus infection.

Quantitative Reverse Transcription Polymerase 
Chain Reaction (qRT-PCR):

TRIzol reagent (Invitrogen) was used to extract the 
total RNA from processed CRC cells or specimens of 
ground tumor tissue. Next, the total RNA was reverse 
transcribed into Complementary Deoxyribonucleic 
Acid (cDNA) using a PrimeScriptTM RT reagent kit 
(Takara, China). PCR amplification was performed 
using SYBR Green qPCR master mix (DBI 
Bioscience) and relative levels of gene expression 
were calculated using the 2-ΔΔCT method[23].

Western blotting:

Processed CRC cells or samples of ground tumor 
tissue were lysed in Radioimmunoprecipitation 
Assay (RIPA) buffer (Beyotime, China) containing 
protease inhibitors and the amount of total protein 
in each lysate was quantitated. The extracted 
proteins were then denatured at 100° and separated 
by Sodium Dodecyl Sulfate-Polyacrylamide Gel 
Electrophoresis (SDS-PAGE). Next, the separated 
protein bands were transferred onto the membranes 
that were subsequently blocked with 5 % skim milk 
for 2 h.

The membranes were then incubated with anti-
METTL3 (Abcam, Cambridge, United Kingdom 
(UK)) or anti-Glyceraldehyde-3-Phosphate 
Dehydrogenase (GAPDH) (Abcam) antibodies 
overnight at 4°, followed by incubation with 
a secondary antibody (Abcam) for 1 h. The 
immunostained protein bands were detected with an 
Enhanced Chemiluminescence (ECL) kit (Thermo 
Fisher Scientific, Waltham, MA, USA). GAPDH 
was set as the internal reference. Western blot assay 
method was performed as described by Liang et 
al.[26].

Transwell assay:

Cell migration and invasion assay was performed 
as described by Cui et al.[27]. Briefly, for migration 
experiments, processed CRC cells were adjusted to a 
density of 5×105/ml; after which, 200 µl of suspended 
cells were added to the upper compartment of a 
transwell chamber, while 600 μl of growth medium 
supplemented with 10 % FBS was added to the 

lower compartment. After 48 h of culture, the cells 
that were penetrated into the lower compartment 
were fixed with 4 % formaldehyde, stained with 0.1 
% crystal violet (Sigma) and counted under a light 
microscope. For invasion experiments, Matrigel was 
diluted in the medium at a ratio of 1:4 in advance. 
Next, the Matrigel (40 μl) was added to the transwell 
chamber and let sit at 37° for 2 h. The other steps 
were the same as those used for the cell migration 
experiments.

Cell Counting Kit-8 (CCK-8) assay:

Treated CRC cells were harvested and inoculated 
into 96-well plates (100 μl/well) and the number of 
cells in each well was adjusted to 3000. Next, CCK-
8 solution (10 μl, Dojindo, Tokyo, Japan) was added 
to each well and incubated for 0, 24, 48 and 72 h, 
respectively, in a 37° incubator. After an additional 
1 h of incubation, the absorption of each well at 
450 nm was read with a microplate reader (Bio-Tek 
Epoch, Santa Clara, California, USA).

Flow cytometry:

An Annexin V-Fluorescein Isothiocyanate (FITC)/
Propidium Iodide (PI) apoptosis kit (Best Bio, 
Shanghai, China) was used to confirm changes in 
apoptosis, as described by Li et al.[28]. Processed 
cells were adjusted to a density of 1×106 cells/ml and 
then treated with Annexin V-FITC (10 μl) and PI (5 
μl) for 15 min in the dark. The cell apoptosis rates 
were then confirmed by flow cytometry.

Enzyme-Linked Immunosorbent Assay (ELISA):

A caspase-3 ELISA kit (Abcam, ab285337) was used 
to test the caspase 3 activity according to instructions 
provided by the manufacturer.

Tumor xenograft model:

A tumor xenograft model was used to evaluate the 
effect of METTL3/circLMNB1 on tumor formation, 
as described by Liang et al.[29]. Male Bagg and 
Albino (BALB)/c nude mice (Specific Pathogen Free 
(SPF) grade; n=32; age=4 w, weight range=20±2 g) 
were purchased from the Shanghai Slack Laboratory 
and reared in separate cages in a barrier system 
(temperature of 22°-25°, humidity of 45 %-55 % and 
a 12 h light/dark cycle). The mice were fed SPF grade 
feed and autoclaved purified water on a daily basis. 1 
w of adaptive feeding was performed before the mice 
were used in any experiments. The 1 ml suspension 
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for 10 s, water flushing, hematoxylin staining for 
30 s, routine dehydration, neutral gum sealing and 
natural drying. Finally, caspase 3 expression was 
detected using a light microscope and assessed by 
two pathologists.

Statistical analysis:

All data were analyzed using International Business 
Machines (IBM) Statistical Package for Social 
Sciences (SPSS) statistics for Windows, Version 21 
software (IBM Corp., Armonk, New York, USA) 
and results are presented as a mean value±Standard 
Deviation (SD). GraphPad Prism 8.0 software was 
used for mapping. Statistical methods consisted of 
the paired Student’s t test and one-way Analysis of 
Variance (ANOVA). A p-value<0.05 was considered 
to be statistically significant.

RESULTS AND DISCUSSION
Knockdown of circLMNB1 prevented the 
proliferation, migration and invasion of CRC 
cells and accelerated apoptosis as shown in fig. 1. 
We first investigated the role of circLMNB1 in 
the pathogenesis of CRC. qRT-PCR was used to 
monitor circLMNB1 expression in CRC tissues 
and non-cancerous tissues (n=20). Results of qRT-
PCR studies showed that circLMNB1 expression 
was significantly increased in CRC tissues when 
compared to non-cancerous tissues (fig. 1A). 
A further analysis revealed that a high level of 
circLMNB1 expression was significantly correlated 
with a higher Tumor, Nodes and Metastases (TNM) 
stage (p=0.0011). However, there was no significant 
correlation between circLMNB1 expression and 
gender, age, tumor size, or distal metastasis (Table 
1). 

containing 1×106 HCT116 cells was subcutaneously 
inoculated into the right anterior axillary fold of each 
mouse. The length of each tumor was determined with 
Vernier calipers once every 7 d and a tumor growth 
curve were plotted. At the end of the study, the mice 
were sacrificed by cervical dislocation and the tumors 
were removed and fixed in 10 % formaldehyde for 24 
h. After routine dehydration and paraffin embedding, 
the tumors were cut into 4 μm thick sections for 
subsequent staining and microscopic investigation.

Hematoxylin and Eosin (H&E) staining:

H&E staining was performed as previously described 
in the literature[30,31]. Slices of tissue were first baked 
for 2 h at 60° and then treated with hematoxylin for 5 
min. Next, the slices were treated with hydrochloric 
acid-ethanol solution, stained with eosin for 3 min, 
dehydrated with gradient alcohol, made transparent 
with xylene and fixed with neutral glue. Pathological 
changes were confirmed by light microscopy.

Immunohistochemistry (IHC) assay:

The tissue slices in each group was first underwent 
routine dewaxing. After cleaning, the slices were 
repaired with sodium citrate (pH=6.0) at high 
temperature and high pressure for 8 min, allowed to 
cool and then immersed in 3 % Hydrogen peroxide 
(H2O2) for 30 min. The slices were then sealed with 
10 % Bovine Serum Albumin (BSA) and incubated 
with anti-caspase 3 (Abcam) overnight at 4°. On 
the next day, the slices were further incubated with 
the primary antibody against caspase 3 for 1 h and 
subsequently incubated with a secondary antibody 
(Abcam) for an additional 1 h. After cleaning, 
the slices were subjected to multiple procedures, 
including 3, 3’-Diazminobenzidine (DAB) staining 

Fig. 1: Knockdown of circLMNB1 prevented the development of CRC cells
Note: (A) N: Non-cancerous tissue; T: Tumor; (B) (       ) NC siRNA; (       ) si-circLMNB1; (C) Transwell assay, migration (       ) NC siRNA; (       )
si-circLMNB1; Invasion (       ) NC siRNA; (       ) si-circLMNB1; (D) Cell viability of LoVo cells, (       ) NC siRNA; (       ) si-circLMNB1; HCT116 
cells,  (     ) NC siRNA; (       ) si-circLMNB1; (E) (       ) NC siRNA; (       ) si-circLMNB1 and (F) Flow cytometry, (       ) NC siRNA; (       ) si-cir-
cLMNB1, *p<0.05
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Next, circLMNB1 siRNA was used to knock down 
circLMNB1 expression in LoVo and HCT116 
cells, and the efficiency of knockdown was verified 
by qRT-PCR. As shown in fig. 1B, the siRNA 
significantly suppressed circLMNB1 expression in 
both cell lines (fig. 1B). The migration and invasion 
capabilities of LoVo and HCT116 cells transfected 
with si-cirlLMNB1 were examined by transwell 
assays. Transwell assays showed that silencing of 
circLMNB1 could significantly reduce the migration 
and invasion capabilities of CRC cells (fig. 1C). 
CCK8 assays were performed to examine the 
viability of circLMNB1 siRNA-treated CRC cells. 
Subsequently, CCK-8 assay results showed that 
cell viability was also reduced in the circLMNB1 
siRNA group when compared with the NC siRNA 
group (fig. 1D, while an ELISA assay for caspase 3 
activity was performed where the caspase 3 activity 
was increased in the circLMNB1 siRNA group (fig. 
1E). Cell apoptosis was measured by flow cytometry. 
Flow cytometry results indicated that circLMNB1 
knockdown could markedly increase the apoptosis 
rate of CRC cells (fig. 1F). These findings revealed 
that circLMNB1 was upregulated in CRC tissues and 
circLMNB1 knockdown could prevent the malignant 
processes of CRC cells.

The high expression of METTL3 in CRC tissues was 
positively correlated with circLMNB1. METTL3 
expression in clinical tissues was measured by qRT-
PCR. We found that METTL3 mRNA expression 
was notably upregulated in the CRC tissues when 
compared to the non-cancerous tissues (fig. 2A). 
Furthermore, Western blotting was performed to 
detect METTL3 expression in CRC tissues. Western 
blot assays verified that the METTL3 protein was 

more highly expressed in the CRC tissues than in the 
non-cancerous tissues (fig. 2B). A further analysis 
revealed that circLMNB1 expression was positively 
correlated with METTL3 expression in CRC tissues 
(fig. 2C, R2=0.2058, p<0.01). In summary, our 
data showed that METTL3 expression was related 
to circLMNB1 in CRC cells and METTL3 might 
participate in the CRC development process by 
regulating circLMNB1.

Overexpression of circLMNB1 attenuated the 
suppressive effect of METTL3 silencing on CRC 
progression. Based on the positive correlation 
between METTL3 and circLMNB1, we decided 
to further verify the effects of METTL3 and 
circLMNB1 on the viability and metastasis of 
CRC cells by conducting rescue experiments with 
METTL3 siRNA and the circLMNB1 overexpression 
plasmid. METTL3 siRNA or/and the circLMNB1 
overexpression plasmid was transfected into CRC 
cells. qRT-PCR results showed that METTL3 siRNA 
suppressed METTL3 expression, but had no effect 
on circLMNB1 expression (fig. 3A). METTL3 
expression was measured by Western blotting. The 
trend in METTL3 expression shown in Western 
blot studies was basically consistent with the trend 
shown by qRT-PCR results (fig. 3B). CCK-8 assays 
were performed to assess the viability of CRC cells. 
Functionally, CCK-8 assays showed that CRC cell 
viability could be significantly reduced by METTL3 
knockdown and the decline in cell viability could be 
reversed by circLMNB1 overexpression (fig. 3C). 
Meanwhile, transwell data revealed that METTL3 
knockdown contributed to significant reductions 
in the migration and invasion capabilities of CRC 
cells, and those reductions caused by METTL3 

Features Parameters Number Low High p-value

Gender
Female 10 6 4

NS
Male 10 4 6

Age
<60 15 9 6

0.3034
≥60 5 1 4

Tumor size
<4.5 cm 12 9 3

0.0988
≥4.5 cm 8 1 7

Distal metastasis
Absent 9 7 2

0.0698
Present 11 3 8

TNM stage
I+II 10 9 1

0.0011
III+IV 10 1 9

Note: NS: Not Significant

TABLE 1: CORRELATION BETWEEN circLMNB1 EXPRESSION LEVELS AND THE CLINICOPATHOLOGICAL 
PARAMETERS OF CRC
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siRNA could also be weakened by circLMNB1 
overexpression (fig. 3D). Overall, these findings 
showed that METTL3 knockdown could reduce the 
viability, migration and invasion of CRC cells by 
downregulating circLMNB1.

Knockdown of METTL3 facilitated the apoptosis 
of CRC cells by downregulating circLMNB1. 
Changes in circLMNB1 expression in CRC cells 
transfected with si-METTL3 or/and the circLMNB1 
overexpression plasmid were detected by RT-qPCR. 
qRT-PCR results showed that knockdown of METTL3 
dramatically downregulated circLMNB1 expression, 
which also could be attenuated by circLMNB1 
overexpression in CRC cells (fig. 4A). ELISA assays 
were performed to confirm the change in caspase 3 
activity in METTL3-silencing or/and circLMNB1-
overexpressing CRC cells. Furthermore, METTL3 
silencing markedly increased caspase 3 activities in 
CRC cells and those increases in caspase 3 activity 
could be reversed by circLMNB1 overexpression 
(fig. 4B). Flow cytometry was used to monitor cell 
apoptosis in the transfected CRC cells. Additionally, 
we found that knockdown of METTL3 significantly 
increased the apoptosis rate of CRC cells, while 
circLMNB1 overexpression could attenuate the 
increase in cell apoptosis mediated by METTL3 
knockdown (fig. 4C). Generally, we found that 
METTL3 knockdown could increase the apoptosis 
of CRC cells through its effect on circLMNB1.

CircLMNB1 overexpression enhanced the growth 
and improved the histopathological structure of 
METTL3-silenced CRC xenograft tumors. Next, we 
further examined whether METTL3 siRNA could 
suppress the growth of the CRC xenograft tumors 
and improve their pathological structure by effecting 
circLMNB1. LoVo cells were transfected with 

METTL3 shRNA or/and circLMNB1 overexpression 
plasmids and then injected into nude mice. As shown 
in fig. 5A, the sizes and volumes of the tumors 
were significantly reduced in the sh-METTL3 
group relative to those in the NC shRNA group and 
those reductions in tumor size and volume could 
be reversed by circLMNB1 overexpression (fig. 5A 
and fig. 5B). Additionally, METTL3 knockdown 
can also notably downregulate METTL3 expression 
in the CRC xenograft tumors. The nude mice were 
sacrificed, their bodies were examined, the tumors 
were removed and tumor volume growth curves were 
plotted. However, overexpression of circLMNB1 did 
not recover the loss of METTL3 expression (fig. 5B 
and fig. 5C). METTL3 and circLMNB1 expression 
was detected by qRT-PCR and Western blotting. 
METTL3 knockdown significantly downregulated 
circLMNB1 expression in the CRC xenograft tumors 
and the downregulation mediated by METTL3 
silencing could be reversed by circLMNB1 
overexpression (fig. 5D and fig. 5E). H&E staining 
was used to analyze the pathological structure of 
tumors and caspase 3 expression was detected by 
IHC. When examined by H&E staining, tissues 
in the sh-METTL3 group displayed signs of cell 
necrosis and nucleus fixation, while tissue necrosis 
in the sh-METTL3 group was somewhat ameliorated 
when circLMNB1 was overexpressed (fig. 5F, upper 
line). IHC results revealed that METTL3 knockdown 
significantly increased caspase 3 expressions in the 
CRC xenograft tumors and those increases could be 
markedly attenuated by circLMNB1 overexpression 
(fig. 5F, lower line). These findings verified that 
METTL3 knockdown could significantly suppress 
tumor growth and destroy the pathological structure 
of CRC xenograft tumors by effecting circLMNB1.

Fig. 2: The high expression of METTL3 in CRC tissues was positively correlated with circLMNB1
Note: (A) (       ) Non-cancerous tissue; (       ) Tumor, *p<0.05; (B) Western blotting and (C) The correlation between METTL3 and circLMNB1 
expression in CRC tissues, **p<0.01
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Fig. 3: Overexpression of circLMNB1 reduced the suppressive effect of METTL3 silencing on CRC progression
Note: (A) METTL3 expression, (      ) NC siRNA; (      ) si-METTL3+EV; (      ) si-METTL3+circLMNB1; (      ) si-METTL3; (B) Western blotting 
technique; (C) CCK-8 assays, (      ) NC siRNA; (      ) si-METTL3; (      ) si-METTL3+EV; (      ) si-METTL3+circLMNB1 and (D) Transwell assay,  
(      ) NC siRNA; (      ) si-METTL3+EV and  (      ) si-METTL3+circLMNB1; (      ) si-METTL3, *p<0.05, **p<0.01 vs. NC siRNA; #p<0.05, ##p<0.01 
vs. si-METTL3+EV

Fig. 4: Knockdown of METTL3 facilitated the apoptosis of CRC cells by downregulating circLMNB1
Note: (A) circLMNB1 expression, (       ) NC siRNA; (       ) si-METTL3; (       ) si-METTL3+EV; (       ) si-METTL3+circLMNB1; (B) ELISA assays,     
(       ) NC siRNA; (       ) si-METTL3; (       ) si-METTL3+EV; (       ) si-METTL3+circLMNB1 and (C) Flow cytometry,  (       ) NC siRNA; (       ) 
si-METTL3; (       ) si-METTL3+EV and (       ) si-METTL3+circLMNB1, *p<0.05, **p<0.01 vs. NC siRNA; #p<0.05, ##p<0.01 vs. si-METTL3+EV
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In 2016, the American Cancer Society reported an 
increase in the number of new cases and deaths 
resulting from CRC[32]. The clinical manifestations of 
CRC are shaped by interactions at multiple levels[33]. 
However, its specific pathogenesis is not fully 
understood. CircRNA has gradually become a key 
RNA studied in malignant cancers due to its closed 
loop structure, high stability, strong specificity and 
ease of detection[34]. Increasing evidence suggests 
that circRNA has the characteristics of tissue-specific 
expression and plays a regulatory role in malignant 
tumors[35-37]. Therefore, circRNA is expected to 
be the most promising molecular marker for use 
in tumor diagnosis, assessment and prognosis[38]. 
Similar to other malignant tumors, CRC development 
requires a battery of complex biological processes 
that involve both coding and non-coding genes. In 
recent years, numerous circRNAs such as circular 
RNA Homeodomain-Interacting Protein Kinase 3 
(circHIPK3)[39], circular RNA Erbb2 Interacting 
Protein (circERBIN)[40], circRNA_0084927[41], 
circSMARCA5[42] and circRNA_0000392[43]. have 
been found to play vital roles in CRC progression. 
The above research suggests that specific circRNAs 
are essential for the malignant progression of CRC. 
Our research revealed that circLMNB1 was notably 
downregulated in CRC tissues and knockdown of 

circLMNB1 could block the progression of CRC, 
including CRC cell proliferation, migration, invasion 
and apoptosis.

The interaction between circRNA and miRNA 
through sponge adsorption is the main direction of 
current related research. For example, in lung cancer, 
circ_101237 interacts with miR-490-3p to affect the 
expression of Mitogen-Activated Protein Kinase 
1 (MAPK1), thereby promoting the malignant 
biological behavior of lung cancer cells and the 
clinical progression of lung cancer[44]. Similarly, 
Xu et al. found that circ_0000392 interacts with 
miR-193a-5p to promote the Phosphoinositide-3-
Kinase (PI3K)/Protein Kinase B (AKT) pathway and 
ultimately promote tumor development in CRC[43]. 
In addition, circRNA can also be encapsulated in 
exosomes to achieve intercellular communication. 
Shang et al. found that exosomal circPACRGL has 
the ability to interact with both miR-142-3p and miR-
506-3p in CRC, promoting Transforming Growth 
Factor-beta (TGF-β1) expression, and promoting 
tumor metastasis ultimately[45]. In our previous study, 
we found that circLMNB1 can directly interact 
with miR-143 and participate in the regulation of 
malignant behavior of CRC cells[46]. However, the 
mechanism of circLMNB1 in depth remains to be 
further explored.

Fig. 5: CircLMNB1 overexpression enhanced the growth and improved the histopathological structure of METTL3-silenced CRC xenograft tumors
Note: (A-C) (      ) NC shRNA; (      ) sh-METTL3; (      ) sh-METTL3+EV; (      ) sh-METTL3+circLMNB1; (D) (      ) NC shRNA; (      ) sh-METTL3; 
(      ) sh-METTL3+EV; (      ) sh-METTL3+circLMNB1; (E) Western blotting and (F) H&E staining and IHC, *p<0.05, **p<0.01 vs. NC shRNA; 
##p<0.01 vs. sh METTL3+EV; NS: Not Significant
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The field of genetics-epigenetics is developing very 
rapidly. Epigenetics mainly refers to changes in 
gene expression that result from gene modification 
rather than changes in the nucleotide sequence of 
genes[47,48]. The RNA modification can extensively 
alter the structure, function and stability of an 
RNA molecule[49]. The m6A modification mainly 
results from the action of a methyltransferase, 
which is removed by demethylase and is recognized 
by a binding protein[50]. The m6A modification 
mainly affects immune tolerance, mRNA stability, 
RNA export and mRNA splicing[51,52]. The m6A 
modification has been reported to play a significant 
role in multiple cancers, such as bladder cancer[53], 
prostate cancer[54], gastric cancer[55], CRC[56] and 
even hematological malignancies[57]. Studies have 
also proved that METTL3, as the most significant 
methylase, can malfunction and be carcinogenic in 
numerous malignant tumors. For instance, METTL3 
was shown to accelerate the proliferation of bladder 
cancer[53], be conducive to the metastasis of gastric 
cancer[58] and enhance the tumorigenesis of cervical 
cancer[59]. Overall, METTL3 plays a critical role in 
cancer progression.

Prior to 2017, studies on m6A modification were 
limited to the mRNA level. It was not until March 
2017 that the first circRNA m6A modification was 
published, thus filling in the previous information 
gap[25]. Subsequent studies proved that m6A 
modification can affect the nuclear localization 
of circRNA and that circRNA can also bind to the 
corresponding regulatory proteins of m6A to affect 
its stability[60]. The two can regulate and permeate 
each other[24]. Recent studies have shown that m6A-
modified circRNA-Sorafenib (circ-SORE) can 
maintain the sorafenib resistance of hepatocellular 
carcinoma cells[61] and that m6A modification of 
circNSUN2 can induce the liver metastasis of 
CRC[62]. In our study, we found that METTL3 was 
highly expressed in CRC and positively correlated 
with circLMNB1. In addition, we also found that 
METTL3 silencing could prevent the proliferation 
and metastasis, and enhance the apoptosis of CRC 
cells, by downregulating circLMNB1. Our data also 
showed that METTL3 silencing could suppress the 
growth and destroy the pathological structure of 
CRC xenograft tumors by decreasing circLMNB1 
expression.

Our current study demonstrated that circLMNB1, as 
an oncogene, might be involved in CRC progression. 
Additionally, we verified that circLMNB1 could be 

distinctly upregulated by METTL3 and METTL3 
silencing could inhibit the malignant activities of 
CRC. These findings suggest METTL3-mediated 
circLMNB1 as a possible target for treating CRC.
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