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Patil et al.: Leptin's Role in Cardiovascular Health and Cancer Progression
Leptin hormone is very well known to play a multifarious role in body. Although it is secreted by 
adipocytes, it has been observed to exert its effects beyond scientists’ initial speculation periphery of 
obesity. The neuroendocrine pathway of leptin is known and its role in obesity is understood considerably. 
Yet the role of leptin like undercurrents of the sea in case of cardiovascular health and initiation of 
cancer has started to uncover itself recently. The aim of the review is to encompass the recent scientific 
studies related with leptin levels and its direct effect or an indirect metabolic effect on the initiation 
and/or propagation of cardiac health and cancer. Many investigations are still underway to recognize 
the underlying mechanisms, it seems the complete uncovering of the so far unknown leptin function 
pathways may take some time. The effects on cardiac health have been found to have multiple metabolic 
pathways. Some of which are discovered up to molecular mechanisms. However, cancer related studies 
are still unclear and often ambiguous while finding the exact cascade of events. This may be partly 
because cancer originates in multiple organs. Moreover, numerous signalling, molecular and metabolic 
as well as other functional pathways are involved in cancer commencement and propagation. Last part 
of review summarises is interplay between the leptin gene with some other crucially important genes 
which regulate the energy balance, and are expressed on variety of cellular sites.
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In year 2014, already 20 y later of its discovery in the 
year 1994, it was realized that the hormone leptin is 
responsible for more than obesity. Hence, the Lancet 
article by Norra MacReady ended with speculation 
that next 20 y may uncover a whole data of disorders 
commencing from either resistance or deficiency 
associated with leptin. This review aims at reviewing 
the discoveries associated with leptin during the last 
decade[1]. 
Previously considered as an inert mass, the adipocytes 
(WAT) entered the cascade of endocrinology and 
neuroendocrinology once they were identified as 
being responsible for the expression of obese or 
leptin gene and their product of expression was a 
hormone leptin[2,3]. Although variability in plasma 
leptin concentration was found associated with 
Body Mass Index (BMI)[3]. In humans it is present 
on chromosome no. 7 and is given the ID 3952[4]. 
Basically a cytokine, leptin with its 16-kDa or 16 
000 g per mole of molecular weight is released into 
blood circulation by adipocytes, in proportion with 
their mass. Leptin is mainly concerned with energy 

metabolism which also involves the neuro-signalling 
pathway[2,3]. High levels of leptin have some biased 
role in physiology of obese people which is observed 
in cardiovascular (hypertension, atherosclerosis, 
myocardial infarction) cerebrovascular and other 
ailments like inflammation and angiogenesis. Leptin 
works both autocrine and paracrine manner on some 
occasions, even considered as beneficial factor post 
myocardial infarction (fig. 1)[5-9].
Among undesired effects of leptin to mention-
prominent one is atherosclerosis increase, the end 
result of which is secretion of a pro-atherogenic 
cytokine protein which occurs via (1) dysfunction 
of the endothelium, intimal layers invaded by 
monocyte; macrophages-to-foam-cell transformation 
and proliferation of the vascular smooth muscle 
cell[6]. Nevertheless, leptin is also confirmed to have 
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Fig. 1: Leptin gene and its mode to impact energy metabolism in human

Fig. 2: Effects of high levels of circulating leptin in physiologically obese population

induced apoptosis, hypoxia reoxygenation (fig. 2)[7-9].anti-apoptotic effects on cardiomyocytes induced 
by ischemia-reperfusion injury, hydrogen peroxide 
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Fig. 3: Direct adverse effects of leptin on heart and vasculature[10-21]

Consequences of these previous two are observed as 
an obvious cardiac insufficiency[10,11] second to which 
comes hypertrophy which is fractionally exerted 
through a p38 Mitogen-Activated Protein Kinase 
(MAPK)-dependent signalling pathway[12,13], and 
an inflammatory effect (through regulating toll like 
receptor expression and inmate immunity activation) in 
preadipocytes and adipocytes[14]. Leptin also has direct 
effects on the vasculature, including atherosclerotic 
effects on monocytes[15], endothelial dysfunction 
resulting from the long-term effect of leptin on 
no synthesis and disturbed bioavailability[16], and 
thrombosis induction (through platelet aggregation via 
cyclic Guanosine Monophosphate (cGMP) inhibited 
3′,5′-cyclic phosphodiesterase 3a and thrombus 
formation)[17-19]. Altogether, leptin could result in 
increased arterial stiffness (fig. 3)[20,21].

METHODOLOGY

This review was prepared using original research 
articles and reviews available from Saudi digital 
library. The journals and articles from Wiley Online 
Library, Clairvita web of science were searched using 
its customized search engines. Key word used were 
leptin. After applying exclusion criteria to stay aligned 
with the aim of the present review, full text articles 
were selected for this narrative review based upon the 
content. Following table describes the details Table 1.

Leptin and heart: 

Cardiac health: The metabolic effects exerted by leptin 
cause some of the undesirable but direct adverse effects 
on the heart. The metabolic effects can be listed as 
shrunk oxidation of the primary source of energy that 
is glucose, secondly amplified fatty acid oxidation. 

Sr. no. Criteria Details

1 Digital access portal for journal databases Saudi digital library

2 Databases searched Wiley online library Web of science, Nature journals

3 Search durations August 2023 to December 2024

4 Search keyword By official symbol ‘LEP’ and official full name ‘leptin’

5 Article publication interval No limits applied

6 Article exclusion criteria Articles unrelated to Biology and Genetics

7 Article inclusion criteria LEP gene studies single or in association with other 
genes, its polymorphisms, population studies

8 Flow charts All flowcharts were prepared using licensed Microsoft 
word and PowerPoint tools

9 Ethical compliance
Not applicable as the present article is of narrative 

review type and previously published research articles 
are utilized

TABLE 1: REVIEW METHODOLOGY DETAILS
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controls[26].
Acute lymphoid leukaemia: Serum leptin levels were 
significantly elevated in acute lymphoid leukemia 
patients[27,28].
Multiple myeloma: Multiple myeloma patients 
showed significantly higher leptin levels compared to 
controls[29].
Glioblastoma: Leptin was overexpressed in 
glioblastomas relative to normal glial tissues[30].
Hepatocellular carcinoma: Leptin levels were 
significantly higher in hepatocellular carcinoma 
patients compared to controls[31].
Ovarian Cancer: High expression of leptin was observed 
in ovarian cancer patients[32].
Endometrial cancer: Leptin was overexpressed in 
endometrial cancer specimens compared to normal 
endometrial tissue samples[33]. 
Population based studies involving leptin levels or gene 
and polymorphism as shown in Table 2[34-43].

Physiological relation of leptin with cancer:

Breast cancer: Multiethnic Cohort studies involving 
706 postmenopausal breast cancer patients revealed 
significantly elevated serum levels of leptin compared 
to matched controls. Women with the highest 
prediagnostic levels of leptin, leptin: Adiponectin ratio, 
and C-Reactive Protein (CRP) exhibited an increased 
risk of postmenopausal breast cancer[22]. Additionally, 
leptin was found to be significantly overexpressed 
in breast cancer tissues compared to non-cancerous 
tissues[23].
Colorectal cancer: Leptin levels were notably higher in 
colorectal cancer patients compared to controls[24].
Papillary thyroid cancer: Significant elevations in 
serum leptin levels were observed in papillary thyroid 
cancer patients[25].
Prostate cancer: Prostate cancer patients exhibited 
significantly higher leptin messenger Ribonuclic 
Acid (mRNA) expression levels compared to healthy 

Sr. no. Ethnicity or nationality Gender Result/conclusion Reference

1 Iranian population with 
confirmed lung cancer NS No association of studied polymorphism of LEP (-2548G/A) 

with lung cancer
[34]

2 Caucasian Male Obesity is linked to the accumulation of numerous variants 
of other genes along with lep.

[35]

3
Saudi population with 
obesity and T2D with 

controls
NS

A link is present between common -2548G>A (rs7799039) 
promoter variant of the human leptin gene (LEP) with leptin 
and serum glucose leptin levels in obese Saudi patients. This 
finding is irrespective of blood pressure status of patients.

[36]

4 CIBERSORT Female Lep expression can be diagnostic biomarker of Preeclampsia [37]

5 Metanalysis Female LEP rs7799039 and leptin receptor rs1137101 polymorphisms 
were not associated with increased risk of Breast cancer

[38]

6 Chinese population Mixed Leptin and body mass are associated [39]

7
Multiethnic 

postmenopausal 706 
patients

Female
Significantly elevated leptin levels in postmenopausal 

woman as risk factor for breast cancer (including other 
factors)

[40]

8 South Indian population Mixed healthy
Common polymorphisms in the leptin gene are strong 
predictors of obesity and leptin levels in South Indian 

population
[41]

9 Egyptian population Systemic lupus 
erythromatosus

No association between leptin levels and gene 
polymorphism and SLE

[42]

10 Arabic population of 
Oman Male and Female Gender-specific reference ranges for serum leptin levels 

reported
[43]

TABLE 2: HUMAN POPULATION STUDIES RELATED WITH LEPTIN
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severe obesity and diabetes, mirroring the phenotype 
observed in leptin receptor-deficient (leptin receptor^db/
db^) mice. This finding underscores the critical role of 
leptin receptor in AGRP neurons for the regulation of 
energy balance and glucose homeostasis. In contrast, 
deletion of leptin receptor in POMC neurons has 
minimal effects, suggesting a lesser role in mediating 
leptin’s primary actions[47]. Activation of leptin receptor 
in turn drives the phosphorylation and activation of the 
transcription factor Signal Transducer and Activator of 
Transcription 3 (STAT3), which drives production of 
anorexigenic peptides that suppress food intake and 
increase energy expenditure[48]. 

Leptin receptor and STAT3 activation: The leptin 
receptor exists in multiple isoforms, with the long 
form (Ob-Rb) being chiefly responsible for signal 
transduction. Upon leptin binding, Ob-Rb undergoes 
conformational changes that activate associated Janus 
Kinase 2 (JAK2). Activated JAK2 phosphorylates 
specific tyrosine residues on Ob-Rb, creating docking 
sites for STAT3. Subsequent phosphorylation of STAT3 
leads to its dimerization and nuclear translocation, 
where it modulates the transcription of target genes 
involved in energy homeostasis and appetite control. 
This mechanism was elucidated through studies 
demonstrating leptin-induced STAT3 activation in the 
hypothalamus of wild-type and ob/ob mice, but not in db/
db mice lacking functional Ob-Rb[49]. STAT3 activation 
is crucial for leptin's regulatory effects on food intake 
and body weight. Mice with neuron-specific disruptions 
of STAT3 exhibit hyperplasia, obesity, and impaired 
glucose tolerance, underscoring STAT3’s essential role 
in mediating leptin's anorexigenic effects furthermore, 
studies utilizing cell-permeable phosphopeptides to 
inhibit STAT3 activation in vivo have demonstrated 
that leptin's ability to acutely reduce food intake and 
influence hepatic glucose fluxes is critically dependent 
on intact STAT3 signalling[50].

STAT3-independent pathways: While STAT3 is vital for 
many of leptin’s actions, certain physiological processes 
are regulated via STAT3-independent mechanisms. For 
instance, research involving mice with a mutated leptin 
receptor incapable of STAT3 signalling (s/s mice) 
revealed that, although these mice developed obesity 
similar to db/db mice, they maintained relatively 
normal reproductive function. This finding suggests that 
leptin’s role in reproduction may be mediated through 
alternative pathways[51]. Dysregulation of the leptin-
STAT3 axis has been implicated in various pathological 
conditions. In obesity, elevated leptin levels often 

Leptin gene interactions with other significant 
genes:

The interesting cascade of interactions of leptin gene 
with other important genes is important to understand 
role of leptin gene in humans and animals. 

Leptin receptor and leptin association: Recent 
structural studies have provided significant insights 
into the mechanism of leptin receptor activation. 
Leptin binding induces a conformational change in 
leptin receptor that facilitates receptor dimerization 
and subsequent intracellular signalling. The leptin-
leptin receptor complex exhibits structural homology 
with the Interleukin-6 (IL-6) family cytokine receptor 
complex exhibits structural homology with the IL-6 
family cytokine receptor complexes, particularly in 
the docking modes of site 2 and site 3 interactions. 
Notably, the leptin-bound leptin receptor complex 
forms an asymmetric 2:2 homodimer, resembling the 
architecture of heterodimeric IL-6 family receptor 
complexes. This asymmetry suggests that a single 
leptin molecule can dimerize two leptin receptor chains, 
initiating downstream signal transduction[44].

Polymorphisms in the leptin receptor gene have been 
explored for their potential association with obesity 
and Type 2 Diabetes Mellitus (T2DM). A study 
focusing on the Korean population identified several 
Single Nucleotide Polymorphisms (SNPs) in the leptin 
receptor gene, including non-synonymous SNPs such 
as Arg109Lys and Arg223Gln. While no significant 
associations were found between these polymorphisms 
and the risk of T2DM, the Arg109Lys variant showed 
a marginal association with BMI, indicating a possible 
link to obesity[45].

Leptin’s regulatory effects on appetite and energy 
balance are mediated through specific neuronal 
populations in the hypothalamus. Traditionally, leptin 
was known to inhibit orexigenic Agouti-Related 
Protein (AGRP) neurons and activate anorexigenic Pro-
Opiomelanocortin (POMC) neurons. However, recent 
research has identified a novel population of leptin-
responsive neurons expressing Basonuclin 2 (BNC2) 
in the arcuate nucleus. Activation of BNC2 neurons 
acutely suppresses food intake by directly inhibiting 
AGRP neurons, highlighting a new component in the 
neural circuitry that maintains energy balance[46]. The 
functional significance of leptin receptor in various 
neuronal populations has been elucidated using 
advanced genetic tools. CRISPR-Cas9-mediated 
deletion of leptin receptor in AGRP neurons results in 
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Disruptions in this pathway contribute to metabolic 
disorders, including obesity. Further research into 
the leptin-POMC axis holds promise for developing 
targeted therapies to address metabolic diseases.

Leptin's inhibitory effects on Neuropeptide Y (NPY) 
and Agouti-Related Peptide (AgRP) neurons: NPY 
and AgRP are potent orexigenic peptides produced in 
the arcuate nucleus of the hypothalamus. Leptin exerts 
inhibitory effects on NPY/AgRP neurons, thereby 
suppressing appetite and promoting energy expenditure. 
Studies have demonstrated that leptin administration 
significantly reduces Npy and Agrp mRNA expression 
in the hypothalamus, an effect mediated through 
the PI3K signalling pathway[61]. Inhibition of PI3K 
signalling impairs leptin's ability to suppress these 
orexigenic genes, underscoring the pathway’s crucial 
role in mediating leptin’s effects. Leptin modulates 
the intrinsic excitability of NPY/AgRP neurons. In 
diet-induced obese mice, persistent activation of NPY 
neurons is observed, and leptin’s efficacy in reducing 
this activity is diminished[62]. This suggests that leptin 
resistance in these neurons may contribute to the 
maintenance of obesity. Additionally, fasting induces 
a leptin-dependent increase in the intrinsic excitability 
of NPY/AgRP neurons, further illustrating leptin's role 
in modulating neuronal activity in response to energy 
status[63]. Recent research has identified Interferon 
Regulatory Factor 3 (IRF3) as a key mediator of leptin's 
acute hunger-suppressing effects in AgRP neurons[64]. 
Activation of IRF3 within these neurons contributes to 
the rapid suppression of hunger, indicating a complex 
intracellular network through which leptin exerts its 
anorexigenic effects.

Leptin's influence on Peroxisome Proliferator-
Activated Receptor Gamma (PPARγ) activity: Leptin 
has been shown to counteract PPARγ’s inhibitory 
effects on chondrogenic differentiation and chondrocyte 
hypertrophy. In growth plate chondrocytes, leptin 
mitigates the suppressive actions of PPARγ, suggesting 
a modulatory role in skeletal development[65]. PPARγ 
directly influences leptin gene expression. A study 
identified a no canonical PPARγ/Retinoid X Receptor 
Alpha (RXRα)-binding sequence that regulates leptin 
expression in adipocytes, indicating that PPARγ can 
modulate leptin levels through direct interaction with 
its promoter region[66]. 

Mouse models have provided significant insights 
into the physiological relevance of leptin and PPARγ 
interactions. In leptin-deficient (ob/ob) mice with liver-
specific disruption of PPARγ, a significant improvement 

lead to leptin resistance, characterized by impaired 
STAT3 signalling, which contributes to uncontrolled 
appetite and further weight gain. Additionally, aberrant 
leptin-STAT3 signalling has been associated with 
cancer progression. For example, in breast cancer, 
leptin-induced STAT3 activation recruits the histone 
methyltransferase G9a, leading to the repression of 
tumor suppressor genes and promotion of cancer cell 
proliferation[52].

Leptin and POMC neurons: POMC neurons, located in 
the arcuate nucleus of the hypothalamus, are integral 
to energy homeostasis. They produce the precursor 
peptide POMC, which is cleaved into several active 
peptides, including Alpha-Melanocyte-Stimulating 
Hormone (α-MSH). α-MSH acts on melanocortin 
receptors to suppress appetite and increase energy 
expenditure. Leptin receptors are expressed on a subset 
of POMC neurons, enabling leptin to modulate their 
activity directly. Approximately 30 % of hypothalamic 
POMC neurons respond to leptin, influencing metabolic 
processes[53,54]. Upon binding to leptin receptors on 
POMC neurons, leptin activates intracellular signalling 
pathways, including the JAK2 and Phosphoinositide 
3-Kinase (PI3K) pathways. This activation leads to 
increased expression of POMC and subsequent release 
of α-MSH, promoting satiety and reducing food intake. 
Additionally, leptin's action on POMC neurons is 
influenced by glucose levels, with studies indicating 
that leptin’s effect on Gamma-Aminobutyric Acid 
(GABA) release to POMC neurons is modulated by 
glucose[55,56]. 

The interaction between leptin and POMC neurons 
is vital for maintaining energy balance. Disruption 
of leptin receptors in POMC neurons impairs 
glucose homeostasis and alters leptin secretion 
during fasting, underscoring the importance of this 
pathway in metabolic regulation[57]. Furthermore, 
leptin’s modulation of POMC neurons influences the 
expression of microRNAs targeting insulin signalling 
pathways, highlighting a complex network of regulatory 
mechanisms[58,59]. In obesity, leptin resistance impairs 
the leptin-POMC signalling pathway, leading to 
dysregulation of appetite and energy expenditure. 
Understanding the precise mechanisms of leptin’s 
action on POMC neurons offers potential therapeutic 
targets for obesity treatment. Modulating this pathway 
could restore leptin sensitivity and improve metabolic 
outcomes[2,60]. Leptin's interaction with POMC neurons 
is a cornerstone of energy homeostasis, influencing 
appetite suppression and metabolic regulation. 
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in fatty liver is observed; however, these mice exhibit 
worsened hyperglycemia and insulin resistance, 
highlighting the tissue-specific roles of PPARγ in 
leptin-deficient states[67].

Leptin-Melanocortin-4 Receptor (MC4R) signalling 
Pathway:

Leptin exerts its effects by binding to receptors 
in the hypothalamus, leading to the activation of 
POMC neurons. These neurons produce α-MSH, 
which subsequently activates MC4R. Activation of 
MC4R results in reduced food intake and increased 
energy expenditure, underscoring its critical role in 
maintaining energy balance[68]. Mutations in either 
the leptin gene or the MC4R gene can disrupt this 
signalling pathway, leading to obesity. Studies have 
demonstrated that individuals with mutations in both 
genes exhibit an additive effect on fat mass, resulting 
in severe obesity. Furthermore, these mutations are 
associated with reduced efficacy of leptin in promoting 
weight loss and suppressing appetite, indicating a 
synergistic interaction between leptin and MC4R in 
energy homeostasis[69]. Leptin resistance, a common 
feature in obesity, is characterized by diminished 
sensitivity to leptin's effects. Research suggests that 
impaired MC4R signalling may contribute to leptin 
resistance. For instance, the absence of MC4R has been 
linked to a reduction in leptin's ability to decrease food 
intake and body weight, highlighting the receptor's role 
in mediating leptin's actions[70].

Leptin-induced modulation of Uncoupling Protein 2 
(UCP2) expression: Leptin has been shown to influence 
UCP2 expression in various tissues. In neuronal cultures, 
leptin treatment induces UCP2 expression, which is 
associated with neuroprotective effects against toxic 
insults such as 1-Methyl-4-Phenylpyridinium (MPP) 
toxicity. This upregulation of UCP2 contributes to the 
maintenance of mitochondrial membrane potential 
and Adenosine Triphosphate (ATP) levels, thereby 
enhancing cell survival[71]. Similarly, in peripheral 
tissues, leptin administration has been observed to 
modulate UCP2 mRNA expression, suggesting a role 
in substrate metabolism and energy dissipation[72].

Tissue-specific effects of leptin on UCP2: The effect 
of leptin on UCP2 expression appears to be tissue-
specific. For instance, chronic leptin administration 
decreases UCP2 protein abundance in the lung, while 
other mitochondrial proteins remain unaffected[73]. In 
skeletal muscle, central leptin administration increases 
UCP2 and UCP3 levels, which is consistent with 

enhanced mitochondrial function and thermogenesis[74]. 
These findings highlight the complex regulatory role of 
leptin on UCP2 expression across different tissues.

The interaction between leptin and UCP2 has significant 
implications for energy balance and metabolic health. 
UCP2 is known to uncouple oxidative phosphorylation, 
leading to reduced ATP production and increased heat 
generation. By modulating UCP2 expression, leptin can 
influence mitochondrial efficiency and Reactive Oxygen 
Species (ROS) production, thereby affecting metabolic 
rate and insulin sensitivity. Additionally, during states 
of altered energy demand, such as lactation, inhibition 
of leptin secretion is associated with downregulation of 
UCP expression in brown adipose tissue and skeletal 
muscle, indicating a coordinated regulation of energy 
expenditure[75].

Genetic associations between leptin and Glucokinase 
Regulator (GCKRL):

Genome-Wide Association Studies (GWAS) have 
uncovered significant associations between genetic 
variants near the leptin gene and the GCKR gene. 
Variants in these regions have been linked to circulating 
leptin levels, suggesting a genetic interplay that 
influences leptin concentrations and thereby affects 
energy balance and glucose metabolism[76,77].

GCKR harbors several polymorphisms that impact 
metabolic traits. The rs780094 variant, for example, has 
been associated with elevated fasting serum triglycerides 
and reduced fasting insulin levels, highlighting its role 
in lipid and glucose metabolism[78,79]. These metabolic 
alterations can indirectly affect leptin secretion and 
action, given leptin’s sensitivity to changes in energy 
storage and insulin signalling.

Pleiotropic effects and metabolic syndrome: Research 
demonstrates that both common and rare exonic 
mutations in GCKR exhibit pleiotropic effects on 
various metabolic parameters, including serum 
triglyceride and albumin levels, as well as the risk of 
metabolic syndrome[80,81]. Given leptin's role in energy 
homeostasis and fat storage, alterations in GCKR 
function may influence leptin dynamics, contributing 
to the development of metabolic syndrome. While 
direct molecular interactions between leptin and 
GCKR require further elucidation, several potential 
mechanisms have been proposed:

Regulation of glucose metabolism: 

Leptin influences hepatic glucose production and 
insulin sensitivity. GCKR, by modulating glucokinase 
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activity, plays a critical role in hepatic glucose 
utilization. Alterations in GCKR function could affect 
glucose levels, subsequently impacting leptin secretion 
and action[82,83].

Lipid metabolism: GCKR variants associated with 
dyslipidaemia may alter adipose tissue function, 
influencing leptin production. Conversely, leptin's 
role in lipid oxidation and storage could modulate 
hepatic lipid metabolism, potentially affecting GCKR 
activity[84,85].

Insulin signalling: Both leptin and GCKR are involved 
in insulin signalling pathways. Disruptions in GCKR 
function may impair insulin sensitivity, leading to 
compensatory changes in leptin levels, given leptin's 
role in modulating insulin action[86,87].

Genetic associations between LEP and Fat Mass and 
Obesity (FTO) associated gene: 

FTO is known to influence energy intake and 
expenditure, with its variants affecting body weight 
regulation[88]. Research has shown that individuals 
carrying risk alleles of FTO have altered leptin 
sensitivity, which may contribute to impaired satiety 
signalling and increased food intake[89,90]. The interaction 
between leptin and FTO appears to play a significant 
role in energy balance. Leptin acts on the hypothalamus 
to regulate appetite and energy expenditure, while FTO 

influences these processes through its effects on RNA 
demethylation and metabolic regulation. Studies have 
shown that FTO variants can affect leptin signalling 
pathways, potentially leading to leptin resistance, a 
condition commonly observed in obesity[91,92]. Several 
mechanisms have been proposed to explain the 
interaction between leptin and FTO viz.

Regulation of energy intake: FTO variants are 
associated with increased energy intake, which may 
influence leptin production and action. Elevated energy 
intake can lead to increased adiposity, resulting in 
higher leptin levels[93,94].

Leptin resistance: FTO variants may contribute 
to leptin resistance by altering the leptin signalling 
pathway. This resistance impairs leptin's ability to 
regulate appetite and energy expenditure, promoting 
weight gain[95,96].

Metabolic regulation: FTO influences metabolic 
processes through its role in RNA demethylation. 
Alterations in these processes may affect leptin's 
metabolic effects, including glucose homeostasis and 
lipid metabolism [97,98].

Table 3 highlights some important genes which interact 
with leptin gene and influence obesity, energy balance 
and interfere with other important parameters[99-111]. 

Sr. no. Gene Expression site Functional 
pathway Activation effects Deletion effects Reference

1 Leptin receptor
Hypothalamic 

neurons, various 
peripheral tissues

JAK2/STAT3 
signaling 
pathway

Mediates leptin 
signaling, regulating 
appetite and energy 

expenditure

Obesity, 
hyperphagia, 

reduced energy 
expenditure

[99]

2 STAT3

Widely expressed, 
including in leptin 

receptor-expressing 
neurons

JAK2/STAT3 
signaling 
pathway

Transduces leptin 
signals to regulate 
gene expression 

related to energy 
balance

Obesity, normal 
fertility, increased 

linear growth
[100]

3 POMC Hypothalamic 
neurons

Melanocortin 
pathway

Produces α-MSH, 
promoting satiety and 
reducing food intake

Hyperphagia, obesity [101]

4 NPY Hypothalamic 
neurons

NPY signaling 
pathway

Stimulates appetite 
and food intake

Reduced feeding 
behavior, leanness

[102]

5 SOCS3

Various tissues, 
including 

hypothalamic 
neurons

Negative 
regulator of 
JAK2/STAT3 

pathway

Inhibits leptin 
signaling, modulating 

energy balance

Enhanced leptin 
sensitivity, 

resistance to diet-
induced obesity

[103]

6 AMPK

Widely expressed, 
including in 

hypothalamic 
neurons

AMPK signaling 
pathway

Inhibits food intake 
and regulates energy 

expenditure in 
response to leptin

Increased food 
intake, decreased 

energy expenditure
[104]

TABLE 3: SUMMARY OF SOME IMPORTANT GENES WHICH INTERACT WITH LEPTIN
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7 AgRP Hypothalamic 
neurons

Melanocortin 
pathway 

antagonist

Increases food 
intake by inhibiting 

melanocortin 
receptors

Reduced food intake, 
leanness

[105]

8 PI3K

Widely expressed, 
including in 

hypothalamic 
neurons

PI3K/Akt 
signaling 
pathway

Mediates leptin's 
effects on glucose 
homeostasis and 
energy balance

Impaired glucose 
metabolism, altered 
energy homeostasis

[106]

9 PPARγ
Adipocytes, 

macrophages, muscle 
cells

Lipid 
metabolism 
and glucose 
homeostasis 

pathway

Promotes 
adipogenesis and 
improves insulin 

sensitivity

Insulin resistance, 
reduced fat 

storage, increased 
inflammation

[107]

10 MC4R Hypothalamic 
neurons

Melanocortin 
signaling 
pathway

Reduces food intake, 
increases energy 

expenditure
Hyperphagia, obesity [108]

11 UCP2 Mitochondria in 
various tissues

Mitochondrial 
uncoupling and 
thermogenesis 

pathway

Regulates energy 
expenditure, reduces 

ROS

Reduced 
thermogenesis, 

increased oxidative 
stress

[109]

12 GCKR Liver, pancreas
Glucose 

metabolism 
pathway

Modulates 
glucokinase activity, 
impacting glucose 

and lipid metabolism

Impaired glucose 
homeostasis, altered 

lipid metabolism
[110]

13 FTO Various tissues 
including brain

RNA 
demethylation 

and energy 
homeostasis 

pathway

Affects energy intake 
and metabolism, 
linked to obesity

Reduced growth, 
lean phenotype

[111]
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