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Zhang et al.: Impact of Luteolin in Bone Marrow Mesenchymal Stem Cells

This study aimed to investigate the impact of the luteolin-microRNA-335-3p pathway on the proliferation 
and osteogenic differentiation of bone marrow mesenchymal stem cells. Cell proliferation was assessed 
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay and osteogenic markers 
were assayed by Western blotting. Luteolin treatment demonstrated a dose-dependent promotion of bone 
marrow mesenchymal stem cells proliferation, accompanied by an increase in osteogenic marker content 
within the cells. Additionally, luteolin treatment dose-dependently up-regulated microRNA-335-3p levels. 
The restoration of microRNA-335-3p further augmented bone marrow mesenchymal stem cells proliferation 
and up-regulated osteogenic differentiation markers. Conversely, knockdown of microRNA-335-3p negated 
the promoting effects of luteolin on bone marrow mesenchymal stem cells. Luteolin facilitates osteogenic 
differentiation and proliferation in bone marrow mesenchymal stem cells by elevating microRNA-335-3p. 
This molecular pathway holds promise as a potential therapeutic target for enhancing bone regeneration and 
combating bone-related disorders.
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Osteoporosis, featured by declined bone mineral 
density and increased fracture risk, has become 
a significant public health concern worldwide. 
The prevalence of osteoporosis continues to rise 
with age, leading to considerable morbidity and 
socioeconomic burden[1]. Therefore, exploring 
novel therapeutic strategies to enhance bone 
formation and counteract bone loss has emerged as 
a critical area of research.

Bone Marrow Mesenchymal Stem Cells (BMSCs) 
play a pivotal role in maintaining skeletal 
homeostasis through their ability to differentiate 
into osteoblasts, the bone-forming cells responsible 
for bone regeneration and repair[2,3]. Various 
signaling pathways and regulatory factors tightly 
govern osteogenic differentiation and proliferation 
of BMSCs, and understanding these mechanisms 
holds the key to developing effective therapies for 
bone-related disorders[4,5].

MicroRNAs (miRNAs) have emerged as essential 

post-transcriptional regulators, capable of 
influencing various cellular processes, including 
osteogenic differentiation and proliferation. 
Among these, miR-335-3p has recently garnered 
attention for its regulatory role in bone metabolism. 
Previous studies have manifested that miR-335-3p 
negatively modulated osteogenesis by targeting 
key genes involved in the osteogenic pathway[6-9]. 
However, the potential modulation of miR-335-
3p to promote osteogenic differentiation and 
proliferation remains an underexplored aspect of 
bone biology.

Luteolin, a flavonoid abundantly present in 
various plant-based sources[10], has exhibited 
diverse biological properties[11-13]. Recent evidence 
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suggests that luteolin may also have beneficial 
effects on bone health[14]. However, the molecular 
mechanisms underlying its osteogenic potential 
and its interaction with miRNAs in BMSCs remain 
elusive.

In this context, our research article aims to elucidate 
the function of luteolin in promoting osteogenic 
differentiation and proliferation in BMSCs. In 
addition, we hypothesized that luteolin treatment 
enhances miR-335-3p content, subsequently 
influencing the expression of osteogenic genes, 
thus facilitating osteogenic differentiation and 
proliferation in BMSCs.

MATERIALS AND METHODS

Cell culture and treatment:

BM-MSCs were purchased from Saiye (Guangdong, 
China) and cultured in Dulbecco's Modified Eagle 
Medium (DMEM) and 10 % Fetal Bovine Serum 
(FBS), 2 mmol/L glutamine, and 1 % antibiotics 
in a 5 % Carbon dioxide (CO2) incubator at 37° 
(all from HyClone, Logan, Utah, United States of 
America (USA)). Cells passages were collected 
for functional analysis. 

BM-MSCs at logarithmic phase (5.0×105) were 
treated with increasing doses of luteolin (0, 2, 4 
or 8 μmol/l) (Chengdu Master Biotechnology Co. 
Ltd., Sichuan, China) for 24 h. 

Cell transfection:

30 nm miR-335-3p mimic (miR-335-3p), inhibitor 
(anti-miR-335-3p) or the control (miR-NC or 
anti-miR-NC) (Gene Pharma, Shanghai, China) 
were transfected into BM-MSCs for 24 h. After 
the validation of transfection efficiency, cells 
were treated with 8 μmol/l luteolin for further 
investigation.

3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyl-2H-
Tetrazolium Bromide (MTT) assay: 

BM-MSCs were inoculated into a 96-well plate 
for 48 h and 72 h, then per well was added with 
10 μl MTT reagent (Solarbio, Beijing, China) 
and incubated for 4 h. Following 150 μl dimethyl 
sulfoxide reaction, the absorbance was tested at 
490 nm.

Western blot:

Radioimmunoprecipitation Assay (RIPA) protein 

lysis solution was used to extract total cell proteins. 
The solution was boiled in a boiling water bath for 5 
min, and then separated by 12 % Sodium Dodecyl-
Sulfate Polyacrylamide Gel Electrophoresis (SDS-
PAGE), followed by shifting to the Polyvinylidene 
Difluoride (PVDF) membrane. Then primary 
incubation and secondary incubation with 
corresponding antibodies were performed. The 
Enhanced Chemiluminescence (ECL) substrate 
kit was utilized to detect protein signals and 
ImageJ software was applied to determine the 
gray values. All primary antibodies included 
Runt-Related Transcription Factor 2 (RUNX2) 
(ab76956, 1:1000), Osteocalcin (OCN) (ab93876, 
1:1000), Osteopontin (OPN) (ab214050, 1:1000) 
and Glyceraldehyde 3-Phosphate Dehydrogenase 
(GAPDH) (ab8245, 1:5000) were provided by 
Abcam (Cambridge, United Kingdom)

Quantitative ReverseTranscription-Polymerase 
Chain Reaction (qRT-PCR):

The Trizol reagent was applied to incubate 
with BM-MSCs to extract total Ribonucleic 
Acid (RNA), which were then synthesized to 
complementary Deoxyribonucleic Acid (cDNA). 
Then amplification reaction using SYBR Green 
PCR Master Mix was conducted (Invitrogen) with 
U6 as an internal reference. The 2-ΔΔCt method 
was applied to assess miR-335-3p content. The 
primers for qRT-PCR, miR-335-3p: Forward 
5ʹ-UUUUUCAUUAUUGCUCCUGACC-3ʹ and 
reverse 5ʹ-CCAGTCTCAGGGTCCGAGGTATTC-
3ʹ; U6: Forward 5ʹ-CTCGCTTCGGCAGCACA-3ʹ 
and reverse 5ʹ-AACCGCTTCACGAATTTGCGT-
3ʹ. 

Statistical analysis:

All experimental data are manifested as the mean±-
standard deviation. The comparison was conducted 
using Analysis of Variance (ANOVA) in multiple 
groups or t test in two groups. p<0.05 was consid-
ered statistically significant difference.

RESULTS AND DISCUSSION 
As shown in Table 1, the proliferation of BM-MSCs 
was dose-dependently increased after treating with 
2, 4, or 8 μmol/l luteolin relative to the untreated 
cells (Negative Control (NC) group). The contents 
of RUNX2, OCN and OPN proteins in BM-MSCs 
were dose-dependently elevated with the treatment 
of increasing doses of luteolin compared with the 
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untreated cells (NC group) as shown in fig. 1 and 
Table 2. As exhibited in Table 3, the treatment of 
luteolin increased miR-335-3p expression in BM-
MSCs at concentrations of 2, 4, or 8 μmol/l luteolin. 
Compared with the introduction of miR-NC, miR-
335-3p transfection markedly elevated its level in 
BM-MSCs (Table 4). Thereafter, it was found that 
miR-335-3p mimic induced proliferation in BM-
MSCs (Table 4). 

miR-335-3p mimic introduction in BM-MSCs 
relative to miR-NC markedly elevated the contents 
of RUNX2, OCN and OPN proteins as shown 
in fig.2 and Table 5. Luteolin treatment in BM-
MSCs increased the proliferation and contents 
of RUNX2, OCN and OPN proteins, while these 
effects were abolished after the inhibition of miR-
335-3p as shown in fig. 3 and Table 6. 

TABLE 1: THE EFFECTS OF LUTEOLIN ON BM-MSCs PROLIFERATION

Luteolin
OD (490 nm)

48 h 72 h

NC 0.38±0.05 0.45±0.04

2 μmol/l 0.47±0.05* 0.52±0.05*

4 μmol/l 0.68±0.07* 0.73±0.09*

8 μmol/l 0.92±0.07* 1.14±0.10*

F 140.655 156.216

p 0.000 0.000

Note: Relative to the NC group, *p<0.05

Luteolin RUNX2 OCN OPN

NC 0.41±0.04 0.35±0.03 0.25±0.04

2 μmol/l 0.53±0.05* 0.44±0.04* 0.37±0.04*

4 μmol/l 0.69±0.04* 0.58±0.05* 0.48±0.05*

8 μmol/l 0.86±0.07* 0.71±0.03* 0.65±0.03*

F 129.821 152.542 157.591

p 0.000 0.000 0.000

Note: Relative to the NC group, *p<0.05

TABLE 2: THE EFFECTS OF LUTEOLIN ON BM-MSCs OSTEOGENIC DIFFERENTIATION

Fig. 1: The protein bands of RUNX2, OCN and OPN with the increasing doses of luteolin
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Luteolin miR-335-3p

NC 1.00±0.10

2 μmol/l 1.59±0.15*

4 μmol/l 1.84±0.19*

8 μmol/l 2.45±0.22*

F 111.036

p 0.000

Note: Relative to the NC group, *p<0.05

TABLE 3: THE EFFECTS OF LUTEOLIN ON miR-335-3p EXPRESSION IN BM-MSCs

TABLE 4: THE EFFECTS OF miR-335-3p ON BM-MSCs PROLIFERATION

Group miR-335-3p
OD (490 nm)

48 h 72 h

miR-NC 0.99±0.08 0.32±0.05 0.41±0.04

miR-335-3p 2.88±0.32* 0.68±0.04* 0.92±0.07*

t 17.19 16.687 18.977

p 0.000 0.000 0.000

Note: Relative to the NC group, *p<0.05

Fig. 2: Up-regulation of miR-335-3p promotes osteogenic differentiation in BM-MSCs

Group RUNX2 OCN OPN

miR-NC 0.37±0.02 0.32±0.03 0.22±0.04

miR-335-3p 0.54±0.05* 0.49±0.07* 0.45±0.05*

t 9.47 6.697 10.776

p 0.000 0.000 0.000

Note: Relative to the NC group, *p<0.05

TABLE 5: miR-335-3p EFFECTS ON OSTEOGENIC DIFFERENTIATION IN BM-MSCs
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differentiation in BM-MSCs. 

In the present work, we also found luteolin 
increased miR-335-3p levels in BM-MSCs. 
miRNAs are widely discovered in eukaryotic cells, 
and can regulate signal transduction pathways and 
gene expression, thereby involving in development 
of various cells including BM-MSCs[25-27]. A 
study showed forced expression of miR-335-
5p promoted osteogenic differentiation in BM-
MSCs[28], which was consistent with our findings 
with the increased RUNX2, OPN and OCN protein 
levels after miR-335-5p restoration. Besides, miR-
335-5p restoration triggered proliferation in BM-
MSCs. In the meanwhile, we also found that miR-
335-5p deficiency abolished the action of luteolin 
on BM-MSCs. 

In all, luteolin accelerates the osteogenic 
differentiation and proliferation in BM-MSCs 
through elevation miR-335-5p, bringing to light 
the possible mechanisms implicated in the function 
of luteolin in osteoporosis treatment. 
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Osteoporosis, in severe cases, it can cause fractures 
in patients, which can have adverse effects on 
their daily lives[15]. BM-MSCs are crucial for 
maintaining bone resorption and bone formation 
balance, and are closely related to the pathogenesis 
of osteoporosis[16]. Luteolin is widely used in 
medicine[17,18]. Luteolin has been manifested that 
can impact osteogenic differentiation[19]. Luteolin 
was able to protect against high glucose-evoked 
oxidative injury in osteoblasts[20]. According to the 
findings of Nash et al., the luteolin isolated from tea 
up-regulated the content of the mineral in human 
osteoblasts[21]. All the data suggested the possible 
suppressing effects of luteolin on osteoporosis. 
In our work, we found that the proliferation of 
BM-MSCs was dose-dependently increased after 
treating with 2, 4, or 8 μmol/l luteolin. Moreover, 
the contents of osteogenic markers RUNX2, OCN 
and OPN were dose-dependently elevated with the 
treatment of increasing doses of luteolin in BM-
MSCs. RUNX2 is essential for bone development 
and osteodifferentiation, and is involved in 
encouraging the expression of osteoblast secretion 
proteins OPN and OCN[22-24]. Therefore, we 
confirmed that luteolin promoted osteogenic 

Fig. 3: Inhibition of miR-335-3p abolishes the promoting effects of luteolin on BM-MSCs

Group miR-335-3p
OD (490 nm)

RUNX2 OCN OPN
48 h 72 h

Luteolin+anti-miR-NC 1.02±0.09 0.89±0.06 1.16±0.12 0.84±0.07 0.73±0.06 0.64±0.07

Luteolin+anti-miR-335-3p 0.32±0.05* 0.62±0.04* 0.93±0.05* 0.62±0.05* 0.58±0.04* 0.47±0.03*

t 20.397 11.233 5.308 7.672 6.24 6.697

P 0.000 0.000 0.000 0.000 0.000 0.000

Note: Relative to luteolin+anti-miR-NC group, *p<0.05

TABLE 6: miR-335-3p DEFICIENCY ABOLISHES THE PROMOTING EFFECTS OF LUTEOLIN ON BM-MSCs
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