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Oxidative stress is involved in the development of 
diseases, which include cardiovascular diseases[1]. 
Increased oxidative stress in the cardiovascular system 
causes biochemical modification and oxidative injuries 
in the cells. There are many pathways involved in 
oxidative stress such as NADPH oxidase (NOX) 
pathways[2] and phospho-p38 mitogen-activated 
protein kinase (MAPK)[3]. Activation of NOX4 would 
increase reactive oxygen species (ROS) generation, 
in particular superoxide anion (O2

-•), which then 
stimulates superoxide dismutase 1 (SOD1) to dismutase 
the anion[4,5]. ROS acts as a second messenger that 
stimulates MAPK activity[6]. Hydrogen peroxide (H2O2) 
is one of the signaling molecules that can permeate 
the cell membrane and activate NOX. NOX4, but not 
NOX1 and NOX2 is upregulated in cardiac cells with 
increased oxidative stress[7]. Clinically, an increase 
in oxidative stress was reported in patients with  
ST-elevation myocardial infarction[8].

Parkia speciosa Hassk, called as petai papan by the 
locals, of Leguminosae family, grows abundantly in 

Southeast Asia region including Indonesia, Thailand, 
Philippines and Malaysia[9]. Its empty pods with or 
without seeds are used in folk medicine to help control 
heart problems[10]. The empty pods contain higher 
amounts of antioxidants than the seeds[11], believed 
to be attributable to presence of quercetin, ellagic 
acid, gallic acid and catechin[12,13]. The pods were also 
reported to possess antiinflammatory property[13,14].

The antioxidant property of P. speciosa extract (PSE) 
has been reported in many studies owing to the 
presence of polyphenols[15-17]. However, information on 
its antioxidant mechanism is still lacking. It might have 
a beneficial role in alleviating cardiovascular disease, 
thus, this study was conducted to further understand 
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its antioxidant mechanism based on MAPK and NOX 
signaling pathways in H9c2 cardiomyocytes that were 
induced by H2O2 as a model to enhance oxidative stress.

MATERIALS AND METHODS

Preparation of PSE:

Pods of P. speciosa plant were bought from a plantation 
in Bidor, Perak, Malaysia (Dec 2014). A voucher 
specimen (UKMB 40239) of the plant was located 
in the Universiti Kebangsaan Malaysia Herbarium 
(Bangi, Selangor, Malaysia) after its identification by 
a botanist. Preparation of ethyl acetate fraction from 
ethanol PSE was done according to a previously 
described method[13]. The fraction was then kept at 
4°. The yield based on dry weight of the pods was  
0.938 %.

Phytochemical analysis of PSE:

Phytochemical analysis of the PSE was conducted by 
the means of high-performance liquid chromatography 
(HPLC) according to a technique previously reported[18] 
with some modifications[13]. The chromatographic 
system used was Waters 2535 with a photodiode 
array detector (Waters 2998, Waters Corp., Milford, 
MA, USA). A C-18 reversed-phased column was 
used (5 μm, 4.6×250 mm; XBridge, Waters, Dublin, 
Ireland). The system was set at 300 nm. The mobile 
phases were 1 % aqueous acetic acid solution (A) and 
acetonitrile (B), with the following gradient at ambient 
temperature, 13 % B for the first 10 min, then changed 
to 20 % at 20 min, 30 % at 30 min, 50 % at 40 min and 
to 70 % at 60 min. At 80 min, the gradient was reduced 
to 20 % B. The flow rate was 0.5 ml/min. The obtained 
peaks were then compared against the retention time 
of catechin (30.8 min) and quercetin (47.1 min), the 
reference standards.

Cell culture and treatment: 

H9c2 cardiomyocytes (ATCC, Manassas, Virginia, 
USA) were grown in Dulbecco's modified Eagle medium 
(DMEM) containing 1 % penicillin/streptomycin/
amphotericin B solution (Gibco, Grand Island, NY, 
USA) and 10 % fetal bovine serum (PAA Laboratories 
GmbH, Pasching, Austria) in a humidified incubator 
(5 % CO2 and 95 % air) at 37°. Cells at passages 
4-7 were used in the study. There were 4 groups of 
cardiomyocytes, which were H2O2 (500 μM), PSE  
(500 μg/ml)+H2O2 (500 μM), quercetin  
(1000 μM)+H2O2 (500 μM) serving as positive 
control[19] and a negative control (0.1 % dimethyl 

sulfoxide, DMSO in DMEM). The cells were pretreated 
for 1 h and exposure to H2O2 was for another 1 h. The 
extract was dissolved in 0.1 % DMSO which gave final 
concentration of 0.01 % DMSO in the culture.

Cell viability assay:

Seeded cells (3×104 cells/well) were used to measure 
the effects of various concentrations of H2O2  
(50-550 μM) on cell viability after 1 h using CellTiter 
96 aqueous One Solution Proliferation Assay kit 
(Promega, Madison, Wisconsin, USA). The viability of 
the cells pretreated with various concentrations of the 
extract fraction (31.25-1000 µg/ml) for 1 h, and then 
treated with median inhibitory concentration (IC50) of 
H2O2 for another 1 h, was also measured. 

Western blot analysis:

The cells (1.2×105 cell/ml) were seeded in T-75 flask. 
Extraction of protein samples from cultured cells and 
western blotting methods were according to previously 
described protocols[20,21]. The primary antibodies used 
were NOX4, β-actin (Santa Cruz Biotech, Dallas, 
Texas, USA), SOD1 and p38 MAPK with 1:100, 
1:1000, 1:1000 and 1:500 dilutions, respectively. The 
secondary antibodies were goat antirabbit IgG-HRP 
(Cell Signaling, Danvers, Massachusetts, USA) or 
goat antimouse IgG-HRP (Santa Cruz Biotech, Dallas, 
Texas, USA) at 1:3000 dilution. The intensity of the 
oxidative stress related proteins were determined 
relatively to the intensity of the β-actin and all results 
were analysed using Image-J software.

Preparation of cell lysate:

The cells (1.2×105 cell/ml) were seeded in T-75 flask 
to obtain cell lysate. After being treated according to 
the groups, media in the culture flask were removed 
and the flask was rinsed with phosphate-buffered saline 
(PBS) solution twice. Then, the cells that attached to the 
surface of the flask were removed by using cell scraper. 
PBS solution containing the cells was centrifuged at 
2500 rpm for 5 min. The cell pellet was resuspended 
in 1 ml of PBS solution, before being centrifuged 
again at 2500 rpm for 5 min at 4°. The resulting pellet 
was resuspended in 100 μl of lysis buffer containing 
protease inhibitor (Complete Mini EDTA-free; Roche, 
Mannheim, Germany) and dithiothreitol (0.154 mg/ml) 
in radioimmunoprecipitation assay buffer (RIPA buffer 
1x; Sigma-Aldrich, St. Louis, Missouri, USA). The 
tube was vortexed every 5 min thrice. Then, the tube 
was centrifuged at 12 000 rpm for 15 min at 4°. The 
resulting supernatant was the cell lysate. 



www.ijpsonline.com

Indian Journal of Pharmaceutical Sciences 1031November-December 2019

Determination of NOX activity:

NOX activity assay was carried out using cell lysate 
following an established method[22]. Briefly, 50 μg cell 
lysate was added into a reaction mixture (final volume 
of 200 μl) that consisted of 250 μg/l cytochrome C 
(Sigma-Aldrich, St Louis, Minnesota, USA),  
100 μM NADPH (Sigma-Aldrich, St Louis, Minnesota 
USA), with or without 100 μM diphenyleneiodonium 
chloride (Sigma-Aldrich, St Louis, Minnesota USA). 
The mixture was incubated for 120 min at 37°. Then, 
the absorbance was measured at 550 nm in ELISA 
microtiter plate reader. The difference between the 
sample absorbance values at 0 and 120 min, was taken 
to calculate the NOX activity with the extinction 
coefficient 21 mmol/l/cm. It was expressed as 
percentage of control.

Determination of intracellular ROS level:

Cell-permeant fluorescent probe, 2’,7’-dichloro 
dihydrofluorescein (DCFH-DA, Sigma-Aldrich,  
St Louis, Minnesota, USA)[23] was used to 
determine ROS level in the cells (5×104 cell/ml). 
The absorbance was read at 485 nm excitation and  
535 nm emission by utilizing a fluorescence plate 
reader (EnSpire Multimode Plate Reader, PerkinElmer, 
USA). ROS level was expressed as percentage of 
control.

Determination of SOD activity:

SOD activity was determined[24-26] in the cell lysate. 
Lysate mixed with 50 mM PBS (pH 7.8), 201.06 mM 
L-methionine (Sigma-Aldrich, St Louis, Minnesota, 
USA), 1.71 mM nitro blue tetrazolium (Sigma-Aldrich, 
St Louis, Minnesota, USA), 1 % Triton X-100 (Sigma-
Aldrich, St Louis, Minnesota, USA) and 106.28 μM 
riboflavin (Sigma-Aldrich, St Louis, Minnesota, 
USA) was placed in an illuminated aluminium box 
with two 20-watt Sylvania Arolux fluorescent lamps 
for 7 min. The absorbance was read at 560 nm by a 
spectrophotometer (Shimadzu, Kyoto, Japan). SOD 
activity was calculated as % inhibition of blue formazan 
formed from the reaction of nitro blue tetrazolium 
and superoxide produced. The enzyme activity was 
depicted as U/mg protein. The content of the protein 
was evaluated using Bradford reagent (Sigma-Aldrich, 
St Louis, Minnesota, USA).

Statistical analysis:

The experiments were conducted in triplicate. The 
data were expressed as mean±standard error of mean 

(SEM). Shapiro-Wilk test was used to evaluate the 
normality of the data. For normally distributed data, 
one way analysis of variance (ANOVA) and Tukey’s 
post-hoc test were applied, while for non-normally 
distributed data, Kruskal-Wallis test was conducted. P 
values <0.05 were considered statistically significant.

RESULTS AND DISCUSSION

P. speciosa empty pods has been reported to contain 
polyphenols[12,13]. In the present study, the PSE 
showed 5 main peaks in the chromatogram (fig. 1). 
However, only quercetin was detected in the extract. 
The quercetin content in the extract was about 5.74 mg 
quercetin per 100 g dried extract. In our previous study, 
PSE ethyl acetate fraction contained the largest amount 
of quercetin compared to other fractions (ethanol and 
hexane)[13]. Based on this, the ethyl acetate fraction was 
selected for further study and quercetin was chosen as 
the positive control.

H9c2 cardiomyocytes were cultured with increasing 
concentrations of H2O2 (50-550 μM) for 1 h. The 
exposure to H2O2 had decreased H9c2 cell viability 
concentration-dependently. The median inhibitory 
concentration (IC50) value of H2O2 obtained was  
500 μM (fig. 2A). Pretreatment with PSE (31.25 μg/ml 
to 1000 μg/ml) prior to exposure to 500 μM H2O2 for 1 h 
had increased cell viability concentration-dependently 
compared to non-pretreated group (0 μg/ml) that was 
exposed to H2O2 (p<0.05, fig. 2B). The cell viabilities 
in groups pretreated with 31.25, 62.5 and 250 μg/ml 
PSE were not different. The group pretreated with  
500 μg/ml PSE had the highest cell viability, which 
was 80.08±0.41 %, while in the group pretreated with  
1000 μg/ml PSE was 72.14±0.64 %. The concentration 
of 500 μg/ml of PSE was selected to be used in 
subsequent experiments. The significant reduction 
in cell viability after 1 h exposure of H2O2 showed 
cytotoxic effect of H2O2. The IC50 of H2O2 obtained 
in the present study was similarly reported[27]. The 
peroxide produces hydroxyl radicals in the presence 
on ferric ion, and superoxide anion which are toxic to 
cells and increases oxidative stress[28], leading to cell 
death. The protective effects of PSE against cell death 
induced by H2O2 most probably owing to high content 
of flavonoid and phenolic compounds present in the 
empty pods[15]. 

H9c2 cells exposed to H2O2 have been used as a model 
for evaluating the effects of natural compounds on 
cardiovascular diseases that are caused by oxidative 
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stress[5,25]. Oxidative stress enhances ROS production 
and increases the risk for cardiovascular disease[26]. 
Overproduction of ROS is believed to contribute to 
the declining cardiac function in patients with cardiac 
disease[8]. It is known that NOX is involved in one of 
the pathways in oxidative stress. Induction with H2O2 
elevated the NOX4 protein expression significantly 
(1.17±0.02, p<0.05) compared to the negative control. 
PSE and quercetin pretreatments significantly blocked 
the elevation of the NOX4 induced by H2O2. In the 
negative control, PSE+H2O2 and quercetin+H2O2 
groups, there was no detectable NOX4 expression was 
observed (fig. 3A). NOX activity was significantly 
more than two-fold higher (383.33±16.67 %, p<0.05) 
in H9c2 cells that were exposed to H2O2 than the 
negative control. PSE (183.33±16.67 %) and quercetin 
(150.00±28.87 %) pretreatments had reduced NOX 
activity significantly compared to H2O2 group 
(p<0.05). NOX activity was similar in both pretreated 
groups, which was also comparable to the negative 
control (fig. 3B). The ROS level was measured to 
confirm the presence of oxidative stress. Exposure to 
H2O2 significantly augmented intracellular ROS level 
(163.76±4.23 %) in H9c2 cells. Both PSE (92.85± 
0.98 %) and quercetin (94.34±2.87 %) groups that were 
treated with H2O2 had significantly lower intracellular 
ROS level than the negative control and H2O2 groups. 
In the pretreated groups, the ROS levels were similar 
(fig. 4).

Elevation of oxidative stress induced by H2O2 promotes 
NOX4 expression, and then its activity as seen in this 
study. NOX4 is the main isoform of NOX expressed 
in the cardiomyocytes and the major source of O2

•- 

in the heart[29,30]. Its activation involves p22phox and 
polymerase delta interacting protein 2 (Poldip2)[31]. 
When induced with H2O2, p22phox forms a stabilizing 
complex with NOX4, followed by the translocation of 
Poldip2 to form an active complex[31,32]. Then, NOX4 
produces O2

•- by transferring electrons from NADPH to  
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Fig. 1: Chromatography analysis 
(A) Parkia speciosa extract (peak 2- quercetin) based on (B) 
reference standards (peak 1- catechin at 30.8 min and peak 2- 
quercetin at 47.1 min) detected at 300 nm
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Fig. 2: Cell viabilities in H9c2 cardiomyocytes 
(A) treated with various concentrations of H2O2 for 1 h and 
(B) pretreated with various concentrations of Parkia speciosa 
extract (PSE) for 1 h, followed by 1 h incubation with H2O2 
(500 μM). Data are shown as mean±SEM (n=3). ap<0.05 vs.  
0 µM, bp<0.05 vs. 50 µM, cp<0.05 vs. 150 µM, dp<0.05 vs. 250 
µM, ep<0.05 vs. 350 µM, fp<0.05 vs. 450 µM. *p<0.05 vs. negative 
control, #p<0.05 vs. H2O2, 

€p<0.05 vs. other PSE concentrations, 
¥p<0.05 vs. other PSE concentrations except 62.5 µg/ml and  
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Fig. 3: Pretreatment with PSE and quercetin on NADPH 
oxidase in H9c2 cardiomyocytes exposed to H2O2
Effect of pretreatment with 500 μg/ml Parkia speciosa extract 
(PSE) and 1000 μM quercetin (Q) on (A) NADPH oxidase 
(NOX) expression and (B) NOX activity in H9c2 cardiomyocytes 
exposed to 500 μM of H2O2. Data shown as mean±SEM (n=3). 
*p<0.05 vs. negative control, #p<0.05 vs. H2O2
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O2 and O2
•-[33]. The effect of H2O2 on NOX4 expression 

was totally blocked by the PSE and quercetin. It was 
similarly demonstrated[34] that showed reduction of 
NOX4 expression by ZYZ-772, a quercetin metabolite 
from Zanthoxylum bungeanum in H9c2 cells. On the 
other hand, the NOX activity was not similarly blocked 
in both groups (PSE and quercetin) because the activity 
measured was not NOX4-specific, but measured total 
activity of other NOXs as well (NOX1, NOX2, NOX3, 
NOX5, DUOX1 and DUOX2). The protective effect of 
PSE was most likely afforded by its quercetin content. 
It is postulated that PSE and quercetin inhibited Poldip2 
translocation to p22phox in the membrane, as well as 
inhibited translocation of cytosolic subunit (p40phox, 
p47phox and p67phox) to the membrane and hence, the 
formation of active oxidase to form O2

•[35]. 

In H2O2-treated H9c2 cells, SOD1 protein expression 
was significantly increased (1.34±0.08, p<0.05). 
The increment was significantly attenuated in the 
groups pretreated with PSE (0.82±0.07) and quercetin 
(0.20±0.08, p<0.05). Quercetin pretreatment had 
significantly diminished SOD1 protein expression, 
which expression was significantly smaller than the 
negative control group and PSE-pretreated group 
(p<0.05). The protein expression observed between 
the negative control group and PSE-pretreated group 
was not different (fig. 5A). Incubation with H2O2 
significantly elevated SOD activity (127.01±10.73 
U/mg protein) in the cells compared to the negative 
control (81.97±5.60 U/mg protein). The SOD activity 
was decreased to 69.86±6.87 U/mg protein in the 
PSE-pretreated and 49.46±5.78 U/mg protein in the 
quercetin-pretreated groups, compared to the H2O2 
group (p<0.05). The activity of the enzyme was not 

different in both pretreated groups, and comparable to 
the activity of the negative control group (fig. 5B).

Upregulation of NOX4 and elevated NOX activity in 
the present study increased production of ROS in the 
cells, which was mitigated by PSE and quercetin. O2

•- 

is importantly involved in the pathogenesis of many 
diseases, like hypertension and atherosclerosis[36]. 
Quercetin in the PSE might be neutralizing ROS by 
donating electrons or hydrogen atoms. Produced O2

•- is 
subsequently converted to H2O2 by SOD[33]. Therefore, 
increased production of the anion following exposure 
to H2O2 had increased the expression and activity of 
the SOD1, as observed in the present study, in turn 
to increase the synthesis of functional SOD enzyme 
to convert O2

•- anion to less reactive H2O2
[4], which 

is then converted into water and oxygen by catalase 
and glutathione peroxidase[37]. SOD is the primary 
defense mechanism and plays more important role 
in detoxifying ROS than catalase and glutathione 
peroxidase[4]. 

Reduced formation of ROS by both PSE and quercetin 
had reduced the demand to increase SOD1 synthesis 
in the cells, as proven by decreased expression and 
activity of the antioxidant enzyme. Quercetin had 
stronger effect on SOD1 downregulation than PSE, 
possibly attributable to its higher concentration 
(1000 μM) than in the latter (2.12 μM). However, 
its effect on the SOD activity was comparable with 
PSE, which might be due to the post-translational 
modification that leads to decreased SOD enzyme 
synthesis by the quercetin. 

p38 MAPK is one of the pathways known to be 
involved in oxidative stress. Therefore, the protein 
expression of MAPK was determined to confirm the 
involvement of the kinase in the protective effect 
of PSE. H2O2 induction in H9c2 cells significantly 
(p<0.05) increased p38 MAPK protein expression in 
comparison to the negative control group (fig. 6). p38 
MAPK protein expression was significantly reduced in 
with PSE- (0.07±0.02) and quercetin-pretreated groups 
compared to the H2O2 group (p<0.05). PSE-pretreated 
group had significantly greater p38 MAPK protein 
expression than the negative control. Quercetin-
pretreated group had comparable protein expression 
with the negative control group and significantly lower 
protein expression than PSE-pretreated group. No 
p38 MAPK expression was detected in the quercetin-
pretreated and negative control groups.
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Fig. 4: ROS level in H9c2 cardiomyocytes pretreated with  
500 μg/ml PSE and Q prior to exposure to H2O2
Reactive oxygen species (ROS) level in H9c2 cardiomyocytes 
pretreated with 500 μg/ml Parkia speciosa extract (PSE) and 
1000 μM quercetin (Q) prior to exposure to 500 μM of H2O2. 
Data shown as mean±SEM (n=3). *p<0.05 vs. negative control, 
#p<0.05 vs. H2O2
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ROS triggers phosphorylation and activation of p38 
MAPK, evidenced by augmented expression of the 
kinase and such effect was attenuated by PSE and 
quercetin. H2O2 might cause oxidative modification 
of the intracellular kinase (MAP kinase kinase kinase, 
MAP3Ks), which is involved in the first step for 
p38 MAPK activation[38], or deactivation of MAPK 
phosphatases (MKPs)[19]. Few other studies had 
previously shown that elevated ROS produced by 

H2O2 activated p38 MAPK phosphorylation[6,34]. PSE 
and quercetin could be triggering MKPs deactivation 
of MAPK by dephosphorylating residues of tyrosine 
and threonine at the MAPK activation site[39]. More 
prominent inhibitory effect of quercetin on p38 MAPK 
expression could be due to its higher concentration. 

The current in vitro study indicated the protective 
effects of PSE in impeding oxidative stress-associated 
cardiovascular diseases. It’s in vitro beneficial effects 
needs to be further confirmed by in vivo studies, 
before its use as a supplement to reduce the risk of 
cardiovascular diseases. In conclusion, the current 
findings suggested that PSE acted as an antioxidant and 
protected H9c2 cardiomyocytes against H2O2-induced 
oxidative stress by modifying NOX4 and MAPK 
signalling pathways. Its effects were comparable to 
that of quercetin, but less effective in downregulating 
SOD1 and p38 MAPK. The beneficial effects of this 
plant could be most probably owing to the polyphenol 
content, particularly quercetin.
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in H9c2 cardiomyocytes pretreated with 500 μg/ml Parkia 
speciosa extract (PSE) and 1000 μM quercetin (Q) followed by 
H2O2 exposure. Data shown as mean±SEM (n=3). *p<0.05 vs. 
negative control, #p<0.05 vs. H2O2, 

¥p<0.05 vs. PSE+H2O2
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Fig. 6: Expression of p38 MAPK in H9c2 cells treated with PSE 
quercetin before exposure to H2O2
The relative expression level of p38 MAPK in H9c2 cells treated 
with 500 μg/ml Parkia speciosa extract (PSE) and 1000 μM 
quercetin (Q) for 1 h before exposure to 500 μM of H2O2 for  
1 h. Data shown as mean±SEM (n=3). *p<0.05 vs. the negative 
control, #p<0.05 vs. H2O2, 

¥p<0.05 vs. PSE+H2O2
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