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Severe acute respiratory syndrome coronavirus 2 poses a huge threat to humans. The β genus Severe 
acute respiratory syndrome coronavirus 2 has four structural proteins: Spike, envelope, membrane and 
nucleocapsid protein. Among them, spike plays an important role in the host cell attachment and fusion. The 
S1 subunit of the spike is responsible for bonding to the host and hence is the most crucial target for finding 
appropriate inhibitors. Molecular docking calculations at the receptor binding domain of S1 subunit have 
been carried out with twenty celastroid triterpenoids and found that they have very good binding energies. 
The interactions of these compounds with important amino acid residues were also thoroughly investigated. 
The docking poses were further validated by the farPPI web server.

Key words: Severe acute respiratory syndrome coronavirus 2, celastroid triterpenoids, molecular docking, 
molecular mechanics with generalised born/Poisson-Boltzmann surface area

The recent pandemic of Severe Acute Respiratory 
Syndrome Coronavirus-2 (SARS-CoV-2) have 
caused human fatal pneumonia spread in a number 
of countries, resulting in more than 267 667 000 
infections and ~5 291 200 deaths as of December 10, 
2021. This disease spread rapidly from Wuhan, Hubei 
Province of China and World Health Organization 
(WHO) named the disease as Coronavirus Disease 
(COVID-19). Common symptoms of patients 
infected with coronavirus such as fever, cough, 
dyspnea and shortness of breath followed by severe 
acute respiratory syndrome, kidney failure and even 
death. Currently, there is no specific treatment or 
medicine for COVID-19 disease[1].

Coronaviruses are divided into four genera (α, β, 
γ and δ) and SARS-CoV-2 is a member of the β 
genus. Coronaviruses are usually constructed by 
four structural proteins, namely, Spike (S), Envelope 
(E), Membrane (M) and Nucleocapsid (N) proteins[2]. 
During the virus infection, this S protein attaches to 
the surface of the host cell with the help of cellular 
receptor Angiotensin-Converting Enzyme 2 (ACE2) 
which is present in human cells[3-5]. S protein is 
cleaved into two functional subunits S1 and S2 where 

S1 is responsible for binding to the host cell and S2 
contains the fusion machinery. The S1 subunits of 
different corona viruses use specific domains. The 
SARS related corona viruses use the SB domain by 
interacting ACE2 to enter the target cells[6]. Thus, 
any molecule that interacts with the spike protein 
at this time may inhibits viral infections[7]. Very 
recently, the Receptor Binding Domain (RBD) of 
SARS-CoV-2 have identified by Tai et al.[8]. They 
recognized residues 331 to 524 of the S glycoprotein 
bound strongly to the ACE2 receptors. Hence this 
RBD side is very important to explore potent and 
selective inhibitors.

Molecular docking is one of the powerful theoretical 
tools to identify potent inhibitors. Many theoretical 
and experimental studies suggested that when ligands 
are docked, the combination always diminishes 
the activity and never enhances[9-15]. In this study, 
we have performed docking with twenty celastroid 
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triterpenoids[16]. These compounds are generally 
very toxic in nature. Celastroids are oxygenated 
and unsaturated 14-nor-D:A-friedo-oleanane 
triterpenoids (fig. 1), have shown antimicrobial and 
antineoplastic activities[16]. Finally, the farPPI web 
server (http://cadd.zju.edu.cn/farppi/) was used 
to validate the docking poses using the Molecular 
Mechanics energies combined with the Poisson 
Boltzmann or Generalized Born and Surface Area 
(MM/PB(GB)SA) methods. 

MATERIALS AND METHODS 
The data set which is selected from the literature 
contains 20 celastroid triterpenoids[16]. The initial 
structures of 20 compounds used in this study were 
constructed by ChemSketch (www.acdlabs.com) as 
shown in fig. 2. The coordinates of SARS-CoV-2 spike 
glycoprotein (6VXX.pdb)[6] were obtained from RCSB 
protein data bank (www.rcsb.org). The 20 celastroid 
triterpenoids were docked into the RBD site of the 
enzyme by using docking program Autodock 4.2[17-

19]. Initially the structures of the 20 compounds were 
optimized with the AM1 method and the hydrogen 
atoms were added to the enzyme. The Lamarckian 
Genetic Algorithm (LGA) was applied to search for 
the best conformers. A grid map with 120×120×120 
points and 0.375 Å spacing was used in Autogrid 
program to evaluate the binding energies between the 
inhibitors and SARS-CoV-2 spike glycoprotein. For 
each compound, ten docking poses were saved and 
ranked by binding energy. The best docking poses of 20 
celastroid triterpenoids were chosen for analyzing the 
type of interaction. The binding site was analyzed with 
Molegro molecular viewer software and Chimera[20,21]. 

Fast Amber Rescoring server provides seven MM/
PB(GB)SA methods and among them we have used 
PB3 methods with the combination of GAFF2 (for 
ligand) and ff14SB force field (for receptor) to calculate 
binding free energy of protein-ligand complex[22].

RESULTS AND DISCUSSION
The binding energies of 20 celastroid triterpenoids 
range from -10.01 to -6.69 kcal/mol and their MM/
PB(GB)SA score ranges from -16.31 to -6.01 kcal/mol. 
The SA and SB domain of S1 subunit are represented 
in fig. 3. Interaction of the 20 compounds with different 
amino acid residues of S glycoprotein are presented in 
Table 1.

Compound 1 forms three hydrogen bonds. The C=O 
group at C-2 forms hydrogen bond with Asp467. 
The –OH group at C-3 forms two hydrogen bonds 
with Asn422 and Glu465. In compound 2 the –OH 
group at C-3 forms two hydrogen bonds with Ser349 
and Asn450. The –COOMe group at C-20 also form 
another hydrogen bond with Asn354. Compound 3 
forms two hydrogen bonds by Ser371 and Ser373 
with –OH group at C-3 and two hydrogen bonds by 
Asp364 with –COOH group at C-20. Compound 4 
forms no hydrogen bond with amino acid residues. 
Compound 5 forms five hydrogen bonds. Lys378 forms 
two hydrogen bonds with C=O group at C-2 and –OH 
group at C-3 simultaneously. The –OH group at C-3 
also makes another hydrogen bond with Cys379. The 
–OH group at C-22 makes two hydrogen bonds with 
Ala372 and Phe374. Compound 6 forms two hydrogen 
bonds of C=O group at C-21 and –OH group at C-20 
with Arg355 and Glu516 respectively.

Fig. 1: Basic structure of celastroid triterpenoids
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Fig. 2: Structures of 20 celastroid triterpenoids

Tingenone(1) Pristimerin(2) Celastrol(3) Iguesterin(4)

15α-Hydroxypristimerin(9) 17-(Methoxycarbonyl)- 28-nor-isoi-
guesterin(10)

Amazoquinone(11) Amazoquinol(12)

Netzahualcoyonol(13) Scutione(14) 6-Oxotingenol(15) 7,8-Dihydro-6-oxo-tingenol(16)

3-Methyl-6-oxotingenol(17) (18) 6-Oxopristimerol(19) Demethylzeylasteral(20)

22β-Hydroxytingenone(5) 20-Hydroxy-20-epi-tingenone(6) Netzahualcoyondiol(7) Netzahualcoyone(8) 
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Fig. 3: SA and SB domain of S1 subunit

Compound number Interaction  with different amino acid residues of S glycoprotein

1 Trp353, Asp420, Tyr421, Asn422, Lys424, Lys462, Glu465, Asp467, Pro491

2 Glu340, Ala344, Arg346, Phe347, Ala348, Ser349, Asn354, Ser399, Asn450

3 Leu335, Cys336, Phe338, Gly339, Phe342, Asn343, Val362, Asp364, Val367, Leu368, Ser371, Ser373, 
Phe374

4 Phe338, Gly339, Phe342, Asn343, Val367,Leu368, Ser371, Ser373, Trp436

5 Tyr369, Ser371, Ala372, Phe374, Phe377, Lys378, Cys379, Pro384

6 Arg355, Tyr396, Asp428, Phe464, Ser414, Thr430, Phe515, Glu516, Leu517

7 Glu340, Ala344, Arg346, Phe347, Ala348, Ser349, Asn354, Ser399, Asn450

8 Phe329, Pro330, Asn331, Ile332, Leu335, Val362, Asp364, Gly524, Lys528,  Pro527, Lys529, Ser530,  
Gln580

9 Arg355, Tyr396, Asp428, Phe429, Thr430, Phe464, Ser514, Phe515, Glu516

10 Phe338, Gly339, Phe342, Asn343, Asp364, Val367, Leu368, Ser371, Ser373

11 Trp353, Lys362, Glu365, Asp420, Tyr421, Asn422, Lys424,Asp467, Pro491

12 Arg355, Asp428, Thr430, Phe464, Ser414, Phe515, Leu517

13 Leu335, Cys336, Gly339, Asn343, Val362, Asp364, Val367, Ser371, Ser373, Phe374

14 Asn334, Leu335, Pro337, Arg357, Ile358, Ser359, Asn360, Cys361

15 Trp353, Asp420, Tyr421, Asn422, Lys424, Lys462, Glu465, Asp467, Pro491

16 Trp353, Asp420, Tyr421, Asn422, Lys424, Lys462, Glu465, Arg466, Asp467, Pro491

17 Arg355, Asp428, Thr430, Phe464, Ser514, Phe515, Leu517

18 Cys336, Gly339, Phe338, Phe342, Asn343, Val367, Leu368, Ser371, Ser373, Phe374, Trp436

19 Cys336, Phe338, Gly339, Glu340, Asn343, Asp364, Val362, Val367

20 Tyr369, Ser371, Phe374, Thr376, Phe377, Lys378, Cys379, Ser383, Pro384

TABLE 1: INTERACTION OF THE 20 DIFFERENT CELASTROID TRITERPENOIDS WITH AMINO ACID 
RESIDUES OF S GLYCOPROTEIN
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Compound 7 forms three hydrogen bonds. The 
C=O group at C-2 and –OH group at C-3 forms two 
hydrogen bonds simultaneously with Gln493. Again –
OH group at C-21 makes hydrogen bond with Glu465. 
In compound 8, -OH group at C-21 forms two hydrogen 
bonds with Ser530 which is outside of the RBD site. 
Compounds number 9 forms two hydrogen bonds with 
Arg355 and Thr430. The -COOMe group at C-17 of 
compound 10 forms two hydrogen bonds with Asn343 
and Ser373. Compounds 11 forms two hydrogen bonds 
by Asp467 and Glu465 with C=O at C-2 and –OH at 
C-3 respectively. Compound number 12 makes two 
hydrogen bonds by Asp428 and Arg355 with the –OH 
at C7 and C=O groups at C21 respectively. Compounds 
number 13 creates four hydrogen bonds with Cys336, 
Val362, Asp364 and Ser373 at the different parts of 
the molecule. Compound 14 forms one hydrogen bond 

by Arg357 with C=O group at C-2. Both compounds 
number 15 and 16 generates six hydrogen bonds. The 
–OH groups at C-2 and C-3 forms five hydrogen bonds 
with Asn422, Glu465 and Asp467. The C=O group at 
C-6 also makes another hydrogen bond with Lys462. 
Compounds 17 forms one hydrogen bond. The –OH 
groups at C-23 and C-22 forms four hydrogen bonds 
with Phe342, Asn343, Phe338 and Cys336 respectively 
in compound number 18. Both compound number 19 
and 20 forms three hydrogen bonds. The best docking 
conformation of 20 celastroid triterpenoids along 
with the important amino acid residues of RBD of 
spike glycoprotein are presented in fig. 4. The binding 
energies of poses of 20 ligands along with hydrogen 
bond interacting amino acids along with MM/PB(GB)
SA scores are presented in Table 2. 

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)
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(M) (N) (O)

(P) (Q) (R)

(S) (T)

Fig. 4: Poses of 20 celastroid triterpenoids in the RBD site of spike glycoprotein
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Though intermolecular hydrogen bonds may play as an 
actor determining the 3D position of the ligand in the 
RBD site, there are some other energy also contribute 
to the free energy induced by bonding. In the output 
dlg file of AutoDock’s calculation, van der Walls 
interaction and electrostatic interaction energies are 
presented separately. Although the electrostatic energy 
variation from one another is too small, but the van deer 
Waals energy contributes some part to the total energy. 

The quinone-methides (compounds 1-14) are 
electrophilic and can form covalent bonds with 
appropriate nucleophiles. So we should closely examine 
the proximity of nucleophilic amino acids to the 

electrophilic sites of the quinone-methide triterpenoids 
(C6). It can be seen that C6 is surrounded with Asp364, 
Asp428, Asp420, Arg346, Arg355, Arg357, Cys336, 
Lys374, Tyr369, Tyr396 and Tyr421, which are 
important nucleophilic amino acids for the interaction 
of the C6 with the protein.

Hence on the basis of the binding free energy and MM/
PB(GB)SA score, two compounds, tingenone and 
7,8-dihydro-6-oxo-tingenol i.e., ligand 1 and 16 may 
be promising candidates for further modification and 
structure-based drug design. The interactions of ligand 
1 and 16 with SB domain of S1 unit are presented in fig. 
5 and fig. 6 respectively.

Docked Pose Hydrogen bond 
residues

Number of hydrogen 
bond

Free energy of binding 
kcal/mol

MM/PB(GB)SA score 
kcal/mol

A Glu465, Asp467, Asn422 3 -8.8 -13.61

B Ser349, Asn354, Asn450 3 -7.9 -6.01

C Asp364, Ser371, Ser373 4 -7.85 -13.99

D - - -8.06 -10.12

E Lys378, Cys379, Ala372, 
Phe374 5 -8.98 -6.61

F Arg355, Glu516 2 -8.18 -13.89

G Glu465, Gln493 3 -7.52 -7.86

H Ser530 2 -8.11 -13.46

I Arg355, Thr430 2 -7.54 -7.89

J Asn343, Ser373 2 -8.38 -6.45

K Glu465, Asp467 2 -8.72 -8.29

L Arg355, Asp428 2 -8.11 -14.13

M Cys336, Val362, Asp364, 
Ser373 4 -6.69 -10.09

N Arg357 1 -7.98 -8.15

O Asn422, Glu465, 
Lys462, Asp467 6 -9.45 -8.85

P Asn422, Glu465, 
Lys462, Asp467 6 -10.01 -16.31

Q Arg355 1 -8.18 -10.98

R Cys336, Phe338, 
Phe342, Asn343 4 -7.74 -9.2

S Cys336, Glu340 3 -7.96 -8.46

T Tyr369, Ser371, Ser383 3 -7.86 -15.84

TABLE 2: FREE ENERGY OF BINDING AND MM/PB(GB)SA SCORE OF DIFFERENT COMPOUNDS ALONG 
WITH HYDROGEN BOND INTERACTING AMINO ACIDS 
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Fig. 5: Interaction of compound 1 with SB domain

Fig. 6: Interaction of compound 16 with SB domain
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