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Naringin is a plant flavonoid of great human value. 
Flavonoids are ubiquitous polyphenolic secondary 
metabolites isolated from vascular plants[1]. They have a 
general structure of 15-carbon skeleton that contains two 
phenyl rings A, B and a heterocyclic ring C[2]. Flavonols 
are the most important flavonoids participating in 
the stress responses of plants[3]. Approximately 8000 
flavonoids have been identified from various citrus 
fruits, vegetables and beverages[4]. They behave as 
chemical messengers, pollinator attractants and stress 
regulatory elements of plants[5]. Flavonoids also exhibit 
human health promoting abilities like antioxidant 
and free radical scavenging potential[6]. They act as 
antiviral, antibacterial, antiinflammatory, vasodilatory, 
anticancer and antiischemic agents[7-12]. Flavonoids 
can undergo various metabolic transformations such 
as methylation and sulfation to change their structures 
and hence their biological activities[13]. 

ACCUMULATION OF FLAVONOIDS

The biosynthesis and accumulation of flavonoids is 
site-specific. Flavonoids are localized in the nucleus, 
vacuole, cell wall, cell membrane and cytoplasm 
of the plant cells[14-16]. Further, the site specificity 
of flavonoids in plants is related to their typical 
physiological, biochemical or morphological traits. 
The alfalfa seeds have been reported to possess 
quercetin, luteolin and 7,4′-dihydroxyflavone 
flavonoids. The stem and roots, however accumulated 

isoflavonoids, medicarpin 3-O-glucoside-6-O-
malonate, formononetin 7-O-glucoside-6″-O-malonate 
and coumestrol glycosides[14]. The Betula pendula and 
B. resinifera plants originating from Finland, Germany 
and Alaska have also been reported to accumulate 
flavonoids, condensed tannins and hydroxycinnamic 
acid only in the leaves on exposure of UV-B radiations. 
However, the plants belonging to Alaska showed 
highest flavonoid accumulation[15]. Likewise, various 
forms of soluble flavonoids are predominantly present 
in grape seeds, white clover and fruit berries. A detailed 
description of accumulation and transport of distinct 
flavonoids of grapevine has already been extensively 
discussed[16-18]. Hence, flavonoids are ubiquitous but 
site specific in nature. 

NARINGIN

Naringin is an important water soluble flavonoid isolated 
from the citrus fruits[19]. It has a molecular weight 
of 580.4 g/mol and molecular formula is C27H23O14  
(fig. 1). It has antioxidant potential and plays an 
important role in the development of leaves, flowers, 
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buds and fruits of plants. It has further induces 
bitterness to the fruits as in grape fruit. However, 
the bitterness can be reduced upon reduction by the 
enzyme naringinase[20]. 

Naringin biosynthesis via phenylpropanoid 
pathway: 

The phenylpropanoid pathway begins with 
phenylalanine, an end product of shikimate pathway. 
The phenylpropanoid pathway gives rise to a diversity 
of end products ranging from flavonoids, tannins and 
lignins[21]. The description of phenylpropanoid pathway 
is discussed hereafter.

The first 7 enzyme catalysed steps of phenylproponoid 
biosynthesis pathway leads to naringin synthesis (fig. 2). 
The first step catalyses the conversion of phenylalanine 
into cinnamic acid by enzyme phenylalanine 
ammonia-lyase (PAL). Phenylalanine is deaminated 
to cinnamic acid and ammonia. In the second step, 
cinnamate 4-hydroxylase (C4H) catalyses conversion 
of cinnamic acid into p-coumarate. p-Coumarate is 
later metabolised into p-coumaroyl CoA via enzyme 
4-coumarate CoA-ligase (4CL)[22]. The pathway up to 
p-coumaroyl CoA synthesis is general phenylpropanoid 
pathway. Subsequently, the pathway diversifies into 
isoflavonoids, stilbenes, proanthocyanidins, flavonols 
and anthocyanins[23]. The enzymes chalcone synthase 
(CHS) and chalcone isomerase (CHI) catalyse 
the division of phenylpropanoids into flavonoid 
biosynthesis. Further, uridine diphosphoglucose-
flavanone 7-O-glucotransferase (UF7GT) mediated 
catalysis generates a group of diverse metabolites[23]. 

CHARACTERIZATION OF ENZYMES 
INVOLVED IN NARINGIN BIOSYNTHESIS

Phenylalanine ammonia-lyase (PAL):

The PAL gene encoding enzyme has been isolated from 

a wide range of plant species. In Epimedium, EsPAL 
was reported to significantly regulate the metabolite 
flux of phenylpropanoid pathway for the biosynthesis 
of various metabolites including icariin, epimedin A, 
B and C[24]. SsPAL1 from ornamental plant Coleus, 
Solenostemon scutellarioides was characterized to 
be stress responsive because of the presence of cis-
acting elements[25]. The PAL gene has also isolated and 
sequenced from three Buckwheat species, Fagopyrum 
tataricum, F. esculentum and F. dibotrys[26]. A biotic 
stress responsive 2145 bp long HbPAL has also been 
characterized from rubber[27]. Similarly, PAL has been 
reported to be cloned and characterized from various 
plants including Salix, Capsicum, Musa acuminate and 
rice[28-31]. Like higher eukaryotes, 2114 bp long TcPAL 
has also been characterized from yeast Trichosporon 
cutaneum[32]. Hyun et al. describes various PAL genes 
isolated and characterized from plants and fungi[33]. 

Cinnamic acid 4-hydroxylase (C4H):

C4H belongs to the P450 monooxygenase super family 
localized in the endoplasmic reticulum of plants[34]. It 
is involved in the detoxification of herbicides as well 
as pesticides[35]. Most recently, BnGC4H gene has 
been characterized from ramie (Boehmeria nivea) 
to be strongly expressed in mature xylem suggesting 
its role in lignin biosynthesis[36]. Likewise, abiotic 
stress responsive GbC4H isolated from Ginkgo 
biloba was characterized to possess recognition 
sites for stress responsive transcription factors GT-1, 
WRKY transcription factor and myeloblastosis 
family transcription factor/Myc[37]. Recently, PaC4H, 
MpC4H1 and MpC4H2 showing catalytic activity 
towards trans-cinnamic acid have been isolated from 
bryophytes, Plagiochasma appendiculatum and 
Marchantia paleacea, respectively[38]. Abiotic stress 
inducible C4H genes have also been characterized 
from tea and sweet potato[39,40]. Similarly, C4H gene 

                            
Fig. 1: Molecular structure of naringin
Naringin has a molecular weight of 580.4 g/mol and a molecular formula of C27H23O14. It is a water soluble antioxidant compound
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has been isolated and characterized from several plant 
species[41,42]. 

4-coumaroyl: CoA-ligase (4CL):

The 4CL mediated catalysis is the last crucial step 
of phenylpropanoid metabolism[22]. The 4CL gene 
has been characterized from various plants[43,44]. The 
cytosol specific putative four 4CL genes has been 
reported from Peucedanum praeruptorum, out of 
which only Pp4CL1 showed root specific catalytic 
activity for p-coumaric acid[45]. A 4CL homolog 
Pa4CL1 from liverwort Plagiochasma appendiculatum 
was characterized to possess 4-coumaroyl: CoA-ligase 
activity in E. coli[46]. The 4CL isoform homologues 
4CL1-4CL4 characterized from Arabidopsis 
thaliana showed phylogenetic closeness but distinct 
functionality. The 4CL1 showed significant role in 
lignin biosynthesis while 4CL3 was responsible for 
flavonoids biosynthesis[47]. 

Chalcone synthase (CHS):

CHS is the first regulatory enzyme as it diverts 

phenylpropanoid to diverse flavonoid biosynthesis[48]. 
Five stress responsive MaCHS genes isolated from 
cytoplasmic fractions of mulberry has revealed the 
abundant accumulation of MaCHS1, MaCHS2 in 
fruits, MaCHS3, MaCHS5 in old leaves and MaCHS4 
in root bark[48]. Likewise, environmental stress 
responsive NtCHS genes has also been characterized 
from vegetative and floral tissues of tobacco[49,50]. 
The MdCHS isolated from apple was validated for 
polyketide synthase activity leading to the synthesis 
of phloretin, naringenin chalcone, and pinocembrin 
chalcone[48]. The functional validation of SoCHS 
isolated from Syringa oblate in tobacco has identified 
it as flavonoid metabolism regulator[51]. Several 
reports of CHS characterization from plants have been 
documented[52,53]. 

Chalcone isomerase (CHI):

CHI importantly regulates the intramolecular 
stereospecific cyclization of chalcones into  
(S)-flavanones. The characterization of CHI from 
various plant species has been reported[54,55]. The 
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Fig. 2: Brief overview of phenylpropanoid biosynthesis pathway
The shikimate pathway leads to the synthesis of phenylalanine that acts as starting molecule of the phenylpropanoid biosynthesis 
pathway. Phenylalanine is metabolized into naringin via 7 enzyme-catalysed steps. The enzymes abbreviated as PAL, C4H, 4CL, 
CHS, CHI, UF7GT and F7GRT stands for phenylalanine ammonia lyase, cinnamate-4 hydroxylase, 4-coumaroyl: CoA-ligase, 
chalcone synthase, chalcone isomerase, uridine diphosphoglucose-flavanone 7-O-glucosyltransferase and flavanone 7-O-glucoside 
2-O-beta-L-rhamnosyltransferase, respectively
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DaCHI1 isolated from Deschampsia antarctica has 
shown enhanced substrate specificity for naringenin 
chalcone than isoliquiritigenin. The multi-substrate 
acting potential of DaCHI1 facilitated flavonoids 
production during oxidative stress and environmental 
variability[56]. The CHI gene isolated from Chinese 
water chest nut was characterized for maximum 
activity at 45° and pH 7.5 in presence of Ca2+ and 
Cu2+[57]. The characterization of SlCHI1 from wild 
tomato has revealed a probable metabolic link with 
terpenoid biosynthesis[58]. Similarly, snapdragon 
AmCHI1 was characterized to regulate the metabolite 
flux of flavonoids biosynthesis towards aurone and 
non-aurone flavonoids[59,60]. 

Uridine diphosphate-sugar dependent 
glycosyltransferases (UGTs):

Flavonoids constitute a variety of aglycone and 
glycone derivatives catalysed by UGTs. The UGTs 
either code for flavonoid glucosyltransferase and/or 
rhamnosyltransferase in support of phenylpropanoid 
pathway[61]. The metabolic conversion of naringenin 
to naringin occurs via two UGTs catalysed 
steps. The involved probable UGTs are Uridine 
diphosphoglucose-flavanone 7-O-glucosyltransferase 
(UF7GT) and flavanone 7-O-glucoside 2-O-beta-
L-rhamnosyltransferase (F7GRT). Recently, UGT 
flavonoid glycosyltranserase (UFGT) isolated 
from sweet orange was characterized for flavonoid 
7-O-glucosyltransferase and 7-O-rhamnosyltransferase 
activities to metabolize substrates including naringenin, 
hesperetin, kaempferol and quercetin[62]. Likewise, 
UFGTs from Freesia hybrida and Crocus sativus were 
characterized for 3GT activity in A. thaliana[63,64]. 

THERAPEUTIC POTENTIAL OF NARINGIN

Naringin appeared to possess diverse activities such 
as antioxidant, antiinflammatory, anticancer and 
antiapoptotic[65]. Its pharmacological effects have been 
well validated through in vitro and in vivo animal 
studies. However, its effect on human health is still 
unknown[66]. The various therapeutic applications of 
naringin are described hereafter (Table 1).

Effect of naringin on ischemic reperfusion injury of 
animals:

Ischemia is a common means of inducing mortality to 
animals. Ischemia followed by reperfusion and presence 
of oxygen-derived free radicals known as reactive 
oxygen species (ROS) leads to animal mortality. 

Hence, nutritional and pharmaceutical-based therapies 
are investigated to regulate the free radical mediated 
damage[67]. Naringin has been reported to effectively 
regulate the ischemic reperfusion mediated neurological 
alteration in the cortex, striatum and hippocampus 
brain regions of male Wistar rats on exposure of 50 and 
100 mg/kg dosage by enhancing their ROS scavenging 
potential[68]. Naringin was documented to cross blood-
brain barrier and scavenge peroxynitrite-induced 
mitophagy in human neural SH-SY5Y cells[69]. The 
antioxidant potential of naringin alleviated the ischemic 
reperfusion-induced renal damage at 400 mg/kg 
exposure[70]. Likewise, protective effect of naringin 
against mesenteric ischemia in rats at exposure of  
80 mg/kg dose was reported[71]. Isoproterenol-mediated 
myocardial ischemia symptomized by reduced activity 
of mitochondrial antioxidant enzymes was alleviated 
on pre-naringin treatment[72,73]. Similarly, 400 mg/kg 
naringin regulated the skeletal muscle ischemia/
damage of male Sprague Dawley rats[74]. 

Naringin and cancer cells: 

The antitumor potential of naringin in animal cells 
including human cell lines has been documented. 
Naringin inhibited the β-catenin signalling pathway 
of human derived triple-negative (ER-/PR-/HER2-) 
breast cancer (TNBC) cells and arrested the cell 
proliferation in the G1 phase of cell cycle followed 
by cellular apoptosis[75]. Likewise, naringin activated 
Ras/Raf/ERK pathways for enhanced p21WAF1 
expression to arrest proliferation and induce apoptosis 
of human bladder carcinoma 5637 cell line[76]. In vivo 
intraperitoneal administration of naringin reduced 
TNF-α and IL-6 accumulation to inhibit the tumorous 
growth in rats bearing walker 256 carcinosarcoma[77]. 
Ganglioside-mediated anticancer potential of naringin 
has also been reported. Naringin inhibited glycosidase 
NEU3 to enhance GM3 gangliosides that inhibited 
proliferation of HeLa and A549 cell lines[78]. Likewise, 
naringin regulated the proliferation of HepG2 
hepatocellular carcinoma cell line[79]. Further, naringin-
based synthetic ruthenium complex showed anticancer 
potential against A549 human cell line without any 
toxicity on dermal fibroblasts[80].

Effects of naringin on metabolic syndrome:

Collective occurrence of genetic and environment-
induced physiological, biochemical and metabolic 
variations designates metabolic syndrome. These are 
generally associated with glucose intolerance, insulin 
resistance, increased blood pressure, atherogenic 
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Medical condition Animal exposed Mode of delivery Observed Alteration Reference

Ischemic 
reperfusion

Male Wistar rats
Intraperitoneal 

administration for seven 
days

Improved neurobehavioral alterations, 
debilitating oxidative damage [69]

Rats Administered as suspension 
in physiological saline Renopotective effect [71]

Rats Intraperitoneal infusion Lowered oxidative stress markers and injury score [72]
Male Sprague 
Dawley rats Oral administration Lowered GSH-Px level, decreased SOD and CAT 

activity of muscles, higher plasma level of CK [75]

Cancer cells

Male Wistar rats Intraperitoneal 
administration

Inhibited tumor growth, increased survival rate 
and reduced TNF-α and IL-6 levels [78]

Rats bearing 
walker 256 

carcinosarcoma

Intraperitoneal 
administration

Inhibited tumor growth and reduced levels of 
TNF-α and IL-6, enhanced survival rate of rats [78]

HeLa, A549 
cancer cell lines

Exposed to cells in mixture 
with DMSO

Suppressed growth of cell lines and NEU3 
glycosidase degrading GM3 ganglioside. Increased 

GM3 ganglioside. Downregulation of Epidermal 
Growth Factor Receptor and extracellular signal–

regulated kinases phosphorylation

[79]

Metabolic 
syndrome

High fat diet fed 
Rats Oral administration

Normalised systolic blood pressure and 
improved vascular dysfunction and ventricular 

diastolic dysfunction
[92]

Rats Orally using an intragastric 
tube

Decreased total ester and free cholesterol 
level, TG, FFA in serum and heart. Reduced 

alteration of serum lipoprotein and lipid 
metabolic enzymes.

[73]

Male Wistar rats Intubation to stomach Improved plasma lipid level and increased 
plasma antioxidant activity

[94]

Rats Oral administration
No change in apolipoprotein A-1 level, lowered 

apolipoprotein B, increase in erythrocyte 
superoxide dismutase and catalase activity

[90]

Rabbits Oral administration
Exhibit hepatic lipid droplets, cardiac 

adipocytes infiltered and damage in endothelial 
lining in aortic wall

[84]

Mice Oral administration Lowered plasma total cholesterol level and 
hepatic HMG-CoA reductase activity [93]

Rats Oral administration Antithyroid and antioxidative activity [123]
Cholesterol 
and 25-OH-
cholesterol-

treated HepG2 
cells, TNF-α-

treated human 
umbilical vein 

endothelial cells 
(HUVECs)

Not mentioned in study
Regulation of nuclear factor kappa-b (NF-κB) 

and ERK signalling pathways, regulate the 
cholesterol level and inflammatory responses

[87]

Hyperthyroidism Rats Cell cultured with naringin Regulated hyperthyroidism by free radical 
scavenging potential [123]

Asthma

Ovalbumin 
induced 

asthmatic mice
Oral administration

Level of interleukin-4, INF gamma, T-bet, GATA 
binding protein 3, Th1 and Th2 levels back to 

normal, progression of asthma significantly inhibited
[98]

Sprague-Dawley 
rats exposed to 
cigarette smoke

Intragastrical 
administration

Inhibited the infiltration of inflammatory cells, 
expansion of alveolar space and thickening of 

bronchial walls
[99]

Osteoclastogenesis, 
bone resorption,
osteolysis

Mice Oral administration
Increased femoral bone mineral density on 
distal and middle portions, suppression of 

osteoclast formation
[103]

Murine 
osteoblastic 

MC3T3-E1 cells
Cell cultured with naringin

Promote osteoprotegerin secretion in vitro by 
osteoblasts and suppress bone loss [105]

Bone marrow 
stromal cells Cell cultured with naringin

Upregulated osteogenesis related genes, 
increased alkaline phosphatase activity and 

accumulation of calcium in cell cultures. 
Accumulation of Notch1 protein during 

osteogenesis

[107]

TABLE 1: MEDICINAL APPLICATIONS OF NARINGIN
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dyslipidaemia and inflammation[81]. The 25 % of 
the total world’s adult population is suffering from 
metabolic syndrome. Increased diet, lesser physical 
activity, sedentary lifestyle and enhanced body mass 
index leads to enhanced occurrence of metabolic 
syndrome[81,82]. The potential of naringin to regulate 
metabolic disorders have been documented[72,83]. 

Signal transduction-mediated regulation: 

Naringin alleviated diet-induced metabolic syndrome 
in C57BL/6 mice fed on fat-rich diet[84]. Activation 
of AMP activated protein kinase and insulin receptor 
substrate 1 blocked the activation of MAPKs pathways 
to improved lipogenesis and insulin resistance (fig. 3)[84]. 
Naringin reportedly, regulated insulin resistance, 
β-cell dysfunction, dyslipidaemia, liver and kidney 
damage by upregulating the PPARγ and heat shock 
proteins HSP-27 and HSP-72[85]. The potential of 
naringin to alter inflammatory cytokines expression 
and cholesterol metabolism via nuclear factor kappa-b 
(NF-κB) and ERK signalling pathway regulation 
was responsible for cholesterol reduction in 25-OH-
cholesterol-treated HepG2 and TNF-α-treated human 
umbilical vein endothelial cells[86]. Similarly, naringin-
mediated downregulation of chemokine C-X3-C motif 
ligand 1 (CX3CL1) and reduced ROS production was 
responsible for the antihyperglycemic potential of 
naringin[87]. Likewise, naringin-mediated regulation of 
heme oxygenase 1 via NF-κB and AMPK regulation 
was responsible for its antiinflammatory response 
during sepsis[88]. 

Regulation of diabetes, cardiovascular dysfunction 
and obesity:

The ability of naringin to regulate glucose, fatty 
acid and cholesterol metabolism was responsible for 
its antidiabetic potential towards hyperglycaemic 
and extremely obese C57BL/KsJ mice as shown in  
fig. 4[89]. Naringin reportedly, enhanced the expression of 
angiopoietin-1 and collagen-1 promoting angiogenesis 
and inhibited apoptosis in the foot ulcers of diabetic 
rats[90]. Likewise, naringin normalized cardiovascular 
dysfunction including systolic blood pressure and 
ventricular diastolic dysfunction of male Wistar rats 
fed on high carbohydrate and fat diet[91]. 

Regulation of hyperlipidaemia:

The hypocholesterolemic potential of naringin 
contributes for its response against hyperlipidaemia. 
Naringin reduced the activity of acyl-coenzyme A, 

cholesterol acyltransferase and enhanced the activity 
of hepatic 3-hydroxy-3-methylglutaryl CoA reductase 
regulating the levels of low density lipoproteins, 
cholesterol and hepatic lipids, thus retarding aortic 
endothelium damage[83]. Likewise, naringin inhibited 
hepatic 3-hydroxy-3-methylglutaryl CoA reductase 
to regulate cholesterol accumulation of LDL receptor 
knockout LDLR-KO mice[92]. Likewise, rats fed with 
cholesterol were documented to maintain the plasma 
lipid levels and increase the plasma antioxidant activity 
on naringin exposure[93]. Further, naringin significantly 
showed antiplatelet effect on hyperlipidemic rabbits 
due to inhibition of P‑selectin and platelet factor 
4 accumulations[94]. Likewise, HIV-1 nucleotide 
reverse transcriptase inhibitor-based hyperlipidaemia, 
apoptosis and oxidative stress of Wistar rats was 
potentially alleviated by naringin[95]. 

Naringin and immunity:

Awassi male lambs pre-treated with antigen 
phytohemagglutinin (PHA) exposed to naringin 
showed accumulation of increased titres of antibody 
against PHA antigen compared to non-treated lambs. 
Further, the activity of antioxidant enzymes and weight 
of naringin-treated lambs was increased. Hence, 
naringin has enhanced the immune responses of lambs 
in addition to improvement in the other evaluation 
parameters[96]. 

Antiasthmatic effect of naringin:

Naringin significantly inhibited the ovalbumin-induced 
asthma by normalizing the levels of interleukin-4, INF 
gamma, T-bet, GATA binding protein 3 and cytokine 
Th1, Th2[97]. The infiltration of inflammatory cells, 
expansion of alveolar space and thickening of bronchial 
walls induced by cigarette smoke was inhibited on 
naringin exposure[98]. Naringin, likewise regulated the 
pathological state of lungs, reduced interleukins and 
decreased lung airway hyper-responsiveness in guinea 
pigs[97]. 

Promotion of bone formation and maintenance:

Naringin potentially induces osteoblast differentiation 
and bone formation by inhibiting HMG-CoA reductase 
inhibitor[99]. Bone grafting with naringin-collagen 
matrix has shown significant formation of new 
bones in the defects[100]. Naringin enhanced protein 
accumulation, bone cell and alkaline phosphatase 
activity in in vitro culture of UMR 106 osteoblasts[101]. 
Naringin reportedly, suppressed osteoclast formation 
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Fig. 3: Regulatory effect of naringin on metabolic syndrome
Mice fed with fat-rich diet showed metabolic syndrome characterised by fatty liver, dyslipidemia, liver dysfunction, insulin resistance 
and obesity. Naringin phosphorylated the AMP activated protein kinase (AMPKα) and insulin receptor substrate 1 (IRS1). Their 
activation led to inhibition of MAPK pathway and lipid biosynthesis. Simulatneously, the fatty acid oxidation, lipogenesis and 
insulin sensitivity was increased. Collectively, these alterations led to conteraction of metabolic syndrome, (↑) upregulation, (┤) 
inhibition
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Naringin exposure variously affected the enzymes of lipid metabolism and glucose-regulating enzyme and reduced hyperglycemia 
and hyperlipidemia, (↑) upregulation, (↓) downregulation
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and increased the femoral bone mineral density in 
mice[102]. Likewise, inhibition of bone resorption 
on naringin exposure has been documented[103,104]. 
Naringin-mediated regulation of NF-κB, ERK (fig. 5) 
and notch signalling pathway was responsible for its 
osteogenic activity[105,106]. 

Regulation of neurodegenerative disorders:

The potential of naringin to regulate neurodegenerative 
disorders has been revealed[107-110]. Naringin reportedly 
upregulated brain-derived neurotrophic and vascular 
endothelial growth factor followed by inhibition of 
neural apoptosis to alleviate spinal cord injury[108]. Role 
of naringin on the prevention of Parkinson’s disease has 
also been documented[109]. Further, naringin enhanced 
glia-derived neurotrophic factor and suppressed TNF-α 
to regulate the symptoms of Parkinson disease in rat 
models[110].

Alleviation of metal and chemical compound-
induced toxicity:

Naringin significantly alleviates metal as well as 
chemical compound-induced toxicity. Naringin 

stimulated the antioxidant system to counteract nickel-
induced nephrotoxicity and hepatotoxicity[111,112]. 
The concomitant exposure of naringin with mercuric 
chloride potentially chelated the metal ions to 
ameliorate induced toxicity[113]. Likewise, toxicity 
induced by metallic chlorides and arsenites were 
reportedly alleviated on naringin exposure[114-116]. 
Neuroprotective potential of naringin to suppress 
insecticide deltamethrin-induced toxicity has also been 
reported[117]. Similarly, alleviation of cardiotoxicity, 
neurotoxicity and renal-hepatic toxicity induced 
by doxorubicin, bleomycin, acetaminophen and 
methotrexate on naringin exposure are reported[118-122]. 

Antithyroid potential:

Hyperthyroidism induced by L-thyroxine (L-T4) in rats 
has been documented to be regulated by the exposure 
of naringin[122]. The free radical scavenging potential 
of flavonoids, naringin, rutin and hesperidin regulated 
hyperthyroidism without any risk of hepatotoxicity[123]. 

Hence in view of the reports documenting the 
multifarious medicinal applications of naringin, 
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Fig. 5: Regulatory effect of naringin on bone resoprtion
Osteoclast activation leads to bone resorption leading to bone breakage. Binding of RANK with RANL leads to activation of NF-
κB and ERK and promotes osteoclast formation. Naringin exposure inhibits the binding of RANK with RANL thus, inhibiting the 
downstream activations and counteracting the osteoclast formation
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naringin containing food products can be recommended 
as a probable supplementation to the existing treatments 
for various disorders as well as maintain human 
health. Naringin could be used as a natural therapeutic 
supplement along the treatment line to alleviate 
several medical disorders and alterations. Studies have 
reported the underlying mechanism of naringin action 
on animal cell lines. However, detailed understanding 
of molecular and biochemical aspects of naringin 
exposure can extrapolate its medicinal applications 
on humans as well. Further, better understanding of 
the phenylpropanoid pathway will reveal the scope of 
synthesis and regulation of naringin in vitro as well as 
in vivo. 
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