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The Coronavirus Disease 2019 pandemic has wreaked havoc on global health infrastructure and personnel, 
resulting in enormous misery, deaths and economic stagnation. Severe Acute Respiratory Syndrome-
Coronavirus-2 respiratory infections are frequently worsened by secondary bacterial infections and  
co-infections due to prolonged hospitalizations; resulting in irreversible lung damage, respiratory failure, 
cardiac arrest and death. The high mortality rate of Coronavirus Disease 2019 patients is primarily due 
to multi drug resistant microbial (viral/bacterial) infections, unrestrained inflammatory response and 
delayed antibody production. The superfluous use of broad spectrum antimicrobial drugs as the last resort 
has further aggravated the Coronavirus Disease 2019 crisis by contributing to the global antimicrobial 
resistance. To overcome these hurdles for effective treatment of Coronavirus Disease 2019 and associated 
bacterial infections, phage therapy seems to be promising due to a lack of effective antiviral drugs and 
antimicrobial-resistant superadded bacterial infections. Prior studies suggest that when phages, their 
cocktails and endolysins are administered alone or in synergism with antibiotics through nebulization 
or through intravenous and intraperitoneal injections have exhibited greater antibacterial potential to 
combat even Multidrug-Resistant pulmonary bacterial infections. Bacteriophages and phagicin have 
also shown potent antiviral activity by triggering the production of antiviral cytokines. Many studies 
have also indicated phage mediated antiviral immunity by lowering Nuclear Factor Kappa B activation 
and reactive oxygen species production. Phage display technique can serve as a promising approach 
for Coronavirus Disease 2019 vaccine development through production of Severe Acute Respiratory 
Syndrome-Coronavirus-2 specific antibodies. This review illustrates the potential of phage therapy as a 
double edged sword to combat both Coronavirus Disease 2019 as well as associated bacterial infections.

Key words: Bacteriophages, viral infections, Coronavirus Disease 2019 , pulmonary bacteria, secondary 
infection, co-infection

In the last two decades, there have been six significant 
viral outbreaks which include Severe Acute Respiratory 
Syndrome-Coronavirus (SARS-CoV) (2002), 
Hemagglutinin Type 1 and Neuraminidase Type 1 
(H1N1) Influenza (2009), Middle East respiratory 
syndrome coronavirus (MERS-CoV) (2012), Ebola 
virus (2013), Zika virus (2015) and SARS-CoV-2 also 
known as Coronavirus Disease 2019 (COVID-19) 
that have contributed to the worldwide turmoil. Out 
of these, four of them (SARS-CoV, H1N1 Influenza, 
MERS-CoV and SARS-CoV-2) resulted in severe 
viral respiratory disease[1]. Clinical presentation for 
COVID-19 infection ranges from asymptomatic to 
severe viral pneumonia with respiratory failure, often 

resulting in death[2]. The COVID-19 virus is estimated to 
have caused approximately 196 million infections and 
4.2 million deaths and the number of infections and 
death toll is still mounting[3]. The emphasis during viral 
pandemic is primarily on viral infection treatment; 
however, associated bacterial infections that develop in 
patients after or during the primary infection quite often 
turns unnoticed. So far, multiple studies have examined 
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the epidemiological and clinical features of COVID-19, 
but data regarding associated bacterial infections is still 
quite limited[4]. 

Respiratory infections due to viruses predispose 
patients to bacterial infections. The 1918 Spanish flu 
outbreak, the 2003 SARS-CoV epidemic and the 2009 
H1N1 Influenza pandemic were also associated  with 
bacterial infections, which have resulted  in increased 
morbidity and mortality[5,6].

According to a recent study, 7 % of COVID-19 positive 
cases developed an extremely heterogeneous bacterial 
infection, with a higher prevalence in intensive care 
settings due to nosocomial infections and invasive 
ventilation[7]. Fu et al. reported secondary bacterial 
infection in 13.9 % of Intensive Care Unit (ICU) 
patients[4]. A retrospective analysis conducted in Wuhan, 
China, stated that the proportion of secondary bacterial 
infection in lungs was 86.3 %, bloodstream 34.3 % 
and urinary tract 7.8 % respectively, in COVID-19 
patients[2]. In addition, another  retrospective analysis 
revealed that 15 % of hospitalized COVID-19 patients 
developed secondary infections, which contributed to 
50 % of the death toll[8]. 

Diagnosis of superadded bacterial infections in this 
pandemic is highly complicated. Hence, broad-spectrum 
antibiotics are used prophylactically to reduce their 
risk, ultimately contributing to the prevalence of Anti-
Microbial Resistance (AMR) globally[7]. However, in 
this challenging time and with the advent of Multi-Drug 
Resistant (MDR) bacterial infections, bacteriophages 
can be introduced as they are highly specific, self-
limiting, self-replicating, naturally abundant, display 
low toxicity, evolve naturally and thus ultimately 
undergo degradation within patient’s body[9,10].

PULMONARY BACTERIAL INFECTIONS 
DURING COVID-19

Secondary bacterial infections occur in addition to 
the primary infection, where bacterial pneumonia 
follows acute viral influenza[11]. Co-infections occur 
simultaneously due to multiple pathogens and are the 
most prevalent complications during a pulmonary 
viral pandemic, resulting in mixed viral and bacterial 
pneumonia features[12]. COVID-19 patients with 
comorbidities and extended hospitalization in ICU 
are susceptible to nosocomial infections including 
Ventilator-Associated Pneumonia (VAP), followed 
by bacteremia with sepsis and also SARS-CoV-2-
associated immune dysfunction. This association 
between COVID-19 and superinfection can be 

probably due to major lung impairment triggered by 
viral reproduction resulting in cytokine storm and 
inflammatory reactions. The impaired immune response 
caused by primary virus-related disease promotes 
secondary bacterial infections and co-infections, leading 
to a high rate of mortality and morbidity. It is projected 
that 1 in 7 COVID-19 patients admitted in hospitals are 
predisposed to secondary infections[13]. The antibiotics 
used in high doses as a last resort for such bacterial 
illnesses can be counter-productive due to several 
side effects and emerging drug resistance. Secondary 
bacterial infections in COVID-19 are predominantly 
caused by Streptococcus pneumoniae, Staphylococcus 
aureus, Klebsiella pneumoniae,  Pseudomonas 
aeruginosa, Escherichia coli and Acinetobacter 
baumannii[14,15]. Several theories have been elucidated 
for the development of concomitant bacterial infection 
in patients with a primary pulmonary viral infection, 
including immunological host modifications, structural 
disruption promoting easy dissemination and impaired 
clearance of mucus within the lungs[1]. Secondary 
bacterial infections are facilitated by the impaired 
mucociliary function of the upper respiratory tract 
caused by primary pulmonary viral insult[16]. Bacterial 
spread is facilitated by thickened mucus, which prevents 
immune cell penetration, as well as immunosuppression 
of the host's immune system as a result of primary 
viral infection[17]. Secondary bacterial infection further 
damages the epithelial cell layer, inhibiting its repair and 
regeneration, thus fostering disease severity, morbidity 
and mortality[18]. In addition, surfactant disruption and 
respiratory tract cell sloughing can provide access 
and essential nutrients enabling bacteria to proliferate 
rapidly[19]. The addition of bacterial infection augments 
airway inflammation and alveolar consolidation, 
increasing the severity of the disease[20].                               

AMR BACTERIAL PREDISPOSITION TO 
PRIMARY VIRAL INFECTION

AMR is a global problem, with 2.8 million people 
infected and 35 000 people dying each year in the 
United States[21] and the indiscriminate use of antibiotics 
during COVID-19 will exacerbate the matter. MDR 
bacteria are becoming more common and our ability 
to eliminate them is dwindling, thereby increasing our 
susceptibility to bacterial infections, especially during 
pandemics. Antiviral and anti-inflammatory properties 
of azithromycin and doxycycline have been empirically 
used to treat COVID-19 infections; besides, they may 
also counter co-infection, but their injudicious use may 
further lead to the emergence of MDR strains. Secondary 
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infections and co-infections have irreversible effects 
during viral pandemics, especially in high-risk groups, 
including immunodeficient or immunosuppressed 
groups[22]. Patients vulnerable to pulmonary viral 
infections (Influenza, SARS and COVID-19) face the 
greatest risk of being infected with superbugs[11,23,24]. 
One of the classical reports of bacterial infection arising 
concurrently or immediately following comes from 
the 1918 influenza pandemic, in which bacterial co-
infection was responsible for the majority of fatalities[5]. 
Approximately 3 00 000 people died worldwide due to 
the 2009 H1N1 pandemic, with bacterial pneumonia 
accounting for 30-55 % of cases[25]. Respiratory 
viruses associated with bacterial co-infection reported 
are influenza, Human Parainfluenza Virus (HPIV), 
Human Metapneumovirus (HMPV), rhinovirus, 
adenovirus and Syncytial Respiratory Virus (SRV)
[26,27]. Human coronavirus NL63, Human Bocavirus 
(HBoV), H1N1 and H5N1 influenza viruses, SARS, 
coronavirus associated with MERS and COVID-19 
are examples of emerging pulmonary  viruses where 
bacterial infections result in complications[26]. Research 
conducted in Wuhan, China, in hospitalized patients 
with COVID-19 reported that MDR Acinetobacter 
baumannii and Klebsiella pneumoniae induced 
secondary infection[2], which resulted in further 
complications. A weakened immune system is a 
significant risk factor for MDR bacterial infections 
in patients with severe COVID-19[28]. Another study 
reported that 33 % of COVID-19 patients acquired 
MDR Enterobacteriaceae, Vancomycin Resistant 
Enterococci (VRE), Enterococcus faecium and MDR 
Pseudomonas aeruginosa[29]. Patel et al. also reported 
the dissemination of MDR gram-negative bacteria 
among COVID-19 patients in Maryland, USA[30]. A list 
of bacterial infections with the virus during COVID-19 
and other previous viral pandemics is shown in Table 
1[31-59]. As broad-spectrum antibiotic prophylaxis does 
not support severe secondary and co-infections in 
COVID-19 patients, alternative antibacterial therapies 
such as bacteriophages can be used to avoid further 
complications and counter global AMR. 

BACTERIOPHAGES: A RESURGENT ARSE-
NAL

Bacteriophages, also known as phages, are ubiquitous 
viruses that selectively infect, replicate inside the 
bacterial cell and kill it without affecting any host 
eukaryotic cells[60]. The administration and exploitation 
of phages for treating pathogenic bacteria dates back 
to a century. The Sacred River Ganges of India is one 

of the major repositories of bacteriophages, particularly 
at Gomukh[61]. In addition, they have been found in 
rivers, sewage, wastewater and hospitals worldwide, 
as well as human and animal gastrointestinal tract 
and wherever their host survives[62]. The resurgence of 
bacteriophage therapy as a potent weapon to combat 
AMR during pandemic times appears to be a rational 
measure in light of the rapid rise in MDR pathogens 
globally, as well as a decrease in the discovery of new 
antibacterial compounds. Hence, they can be utilized 
either alone or in combination with antibiotics to treat 
resistant bacteria[63]. 

Bacteriophage therapy utilizes phages that specifically 
docks on host-pathogen for its replication, resulting 
in the release of phage progeny via lysis of its host[64]. 
Bacteriophages replicate via two types of cycles, i.e. 
lytic and lysogenic cycles. Bacteriophages attach 
and invade susceptible specific bacteria in these two 
groups via specific bacterial receptors (fig. 1A)[65]. 
Specific phages infect and take over the replication 
process of their exclusive host cells (bacteria) during 
the lytic cycle, producing viral genomes and proteins  
(fig. 1E). Following that, phage assembly and packaging 
culminate in the release of new progeny via cell lysis, 
which would further  colonize other bacterial hosts  
(fig. 1F)[66]. In the lysogenic cycle, bacterial biochemical 
machinery is infiltrated, where viral genetic material 
is incorporated (fig. 1B) into the host genome and the 
virus chromosome is conveyed to daughter cells via 
cell division (fig. 1C)[60]. The incorporated viral DNA 
(prophage) remains inactive but is replicated with 
each cell division of its host[67]. The prophage becomes 
activated under the correct environment, initiating the 
lytic cycle and releasing new progeny[68].

BACTERIOPHAGE THERAPY: A DOUBLE 
EDGE SWORD AGAINST COVID-19 PAN-
DEMIC

Phage therapy was originally designed to kill bacteria. 
Previously, little was known about the biology of 
phages and their interaction with bacteria[64]. With the 
advancement of biomedical technology new details 
about bacterial and viral biology (fig. 2) has been 
revealed and a strong resurgence of phage therapy has 
been observed due to the emergence of AMR during 
pandemics on a global platform[69]. Bacteriophages have 
great potential to tackle bacterial infections either alone 
or in combination with antibiotics[61] and through its 
lytic enzymes as well as can be used against viruses via 
phage display technique, thus leading to a prospective 
roadmap to tackle COVID-19 and associated bacterial 
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Virus Associated Bacteria Infection type References

Influenza

Staphylococcus aureus, MRSA Co-infections [31-34]

Streptococcus pneumoniae Co-infections [35]

Streptococcus pyogenes Secondary infections [36]

Haemophilus influenzae Co-infections [37]

Chlamydophila pneumoniae Co-infections [38]

Mycoplasma pneumoniae Co-infections [38]

Klebsiella pneumoniae, Pseudomonas aeruginosa, 
Acinetobacter baumannii, Burkholderia cepacia, 
Enterobacter aerogenes, Legionella pneumophila

Secondary infections [39]

Metapneumovirus

Streptococcus pneumonia, Haemophilus influenzae, 
Enterococcus spp., Brucella spp., Streptococcus pyogenes Secondary infections [40]

Respiratory syncytial virus

Pseudomonas aeruginosa Secondary infections [41]

Adenovirus

Haemophilus influenzae, Chlamydia trachomatis Co-infections [42]

Parainfluenza Streptococcus pneumoniae, Haemophilus influenzae Secondary infections [43]

Streptococcus agalactiae Co-infections [44]

Rhinovirus Streptococcus pneumoniae, Mycoplasma pneumoniae Co-infections [45]

Staphylococcus aureus Co-infections [46]

SARS Chlamydophila pneumoniae Co-infections [6]

Mycoplasma pneumoniae Co-infections [6]

MRSA Secondary infections [47,48]

MERS

Mycobacterium tuberculosis Co-infections [49]

TABLE 1: PULMONARY VIRAL AND ASSOCIATED BACTERIAL INFECTIONS
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COVID-19

Acinetobacter baumannii, Klebsiella pneumoniae Co-infections [50]

Mycoplasma pneumoniae, Legionella pneumophila, 
Streptococcus pneumoniae Secondary infections [51]

Staphylococcus aureus Co-infections [52]

Haemophilus influenza, Staphylococcus aureus Co-infections [53]

Enterobacter cloaca, Acinetobacter baumannii Secondary infections [54]

Pseudomonas aeruginosa, Staphylococcus aureus Secondary infections [55]

Staphylococcus aureus, Pseudomonas aeruginosa, 
Klebsiella pneumoniae, Escherichia coli Secondary infections [56]

Klebsiella pneumoniae, Klebsiella oxytoca, 
Staphylococcus aureus, Enterobacter cloacae, 

Enterobacter aerogenes, Pseudomonas aeruginosa
Secondary infections [57]

Klebsiella pneumoniae, Acinetobacter baumannii Secondary infections [58]

Staphylococcus aureus, Klebsiella oxytoca, 
Stenotrophomonas maltophilia, Haemophilus influenza & 

Haemophilus parainfluenzae
Co-infections [59]

 
Fig. 1: Mechanism of action (Lytic and lysogenic cycle) of bacteriophages

infections during COVID-19 pandemic.

Phage therapy against secondary pulmonary 
bacterial infections:

As AMR infections continuously rise, adjunct 
therapeutic options are required, inspiring renewed 
interest in bacteriophage therapy. Waters et al. reported 
high effectivity of phage therapy against recalcitrant 
chronic lung infection caused by Pseudomonas 
aeruginosa[70]. A recent study investigated the use 
of pre optimized phages as an alternative therapy 
for lung infections caused by carbapenem-resistant 
Acinetobacter baumannii strains in COVID-19 patients 
and showed improvement in infection by reduction of 
bacterial load[71]. A case report describes a favorable 
phage therapeutic response in a cystic fibrosis patient, 
confirming its efficacy against Staphylococcus 

aureus[72]. The phage therapeutics studies including 
bacteriophages and lysins for most frequent pulmonary 
bacteria causing secondary infections are listed in  
Table 2. Recently, the U.S. Food and Drug 
Administration (FDA) have approved clinical trials 
for personalized intravenous phage therapy intended 
for COVID-19 patients[73] suffering with bacteremia, 
pneumonia or septicemia due to MDR bacterial co-
infections by Pseudomonas aeruginosa, Acinetobacter 
baumannii or Staphylococcus aureus[74-100]. 

Phage synergism with antibiotics:

Bacteriophages have been used synergistically with 
antibiotics to treat AMR infections. The use of 
phages in synergism with antibiotics has proven to 
be extremely efficient in the treatment of antibiotic-
resistant opportunistic bacteria that cause polymicrobial 
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Fig. 2: Future perspectives of bacteriophage therapy during COVID-19 and associated pulmonary bacterial infections

Secondary Bacterial Infection Subject
Phages/Lysin

Phage Family Administration Reference
+/- Antibiotic

Multi-Drug 
Resistant Pseudomonas 
aeruginosa Pneumonia

Murine
Phage cocktail PaAH2ΦP 
(103), PsBAP5Φ2 (130) 

and PAΦ134+Meropenem
Myoviridae

Intratracheal/
Intraperitoneal 

injection

[74]

Pseudomonas aeruginosa 
Ventilator-associated 
Pneumonia

Human
AB-PA01 (Cocktail 

of four lytic 
phages)+antibiotics

Myoviridae 
and 

Podoviridae

Intravenous and 
nebulization

[75]

Imipenem resistant 
Pseudomonas aeruginosa 
bacteremia

Mice
Phage ØA392 and phage 

Ø1093cocktail
Myoviridae

Intraperitoneal 
injection

[76]

Pseudomonas aeruginosa, 
Staphylococcus aureus, 
Streptococcus pyogenes, 
Proteus and Escherichia coli

Human
Pyophage (Cocktail of 

phages)
Podoviridae & 

Myoviridae

Nebulization & 
sanitizing of nose 

and throat

[77]

Burkholderia cepacia chronic 
lung infections

Galleria 
mellonella 

larvae

ΦKS12, 
ΦKS14+Meropenem, 
Ciprofloxacin, and 

Tetracycline

Myoviridae
Hamilton syringe 

injection
[78]

Burkholderia cepacia complex 
respiratory infections

Mice ΦKS4-M, ΦKS14, Φ KS12 Myoviridae
Intraperitoneal & 

Aerosolized
[79]

Burkholderia cepacia and P. 
aeruginosa Pneumonia

In vitro
ΦKS4- M, ΦKS14, and 

cocktails of ΦKZ/D3 and 
ΦKZ/D3/KS4-M

Myoviridae

Spray-dried 
respirable 

powders delivered 
from an Aerolizer® 

dry powder inhaler 
(DPI)

[80]

K. pneumoniae B5055-
mediated lobar pneumonia

Mice ΦSS Podoviridae
Intraperitoneal 

injection
[81]

TABLE 2: PHAGE THERAPY AGAINST SECONDARY PULMONARY BACTERIAL INFECTIONS
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Multidrug-Resistant Klebsiella 
pneumoniae ST258 bacterimia

Mice Pharr  ΦKpNIH-2
Podoviridae 
Siphoviridae

Intraperitoneal 
injection

[82]

Carbapenem-
resistant Acinetobacter 
baumannii (CRAB)

Human
Phage cocktail 

(ΦAb124+ΦAb121)
Podoviridae & 

Myoviridae
Nebulization [83]

Multidrug resistant A. 
baumannii (MDRAB)

Mice
ΦPD-6A3/Endolysin 

Ply6A3
Podoviridae

Intraperitoneal 
injection

[84]

Carbapenem-
resistant Acinetobacter 
baumannii (CRAB) associated 
pneumonia

Mice ΦSH-Ab 15519 Podoviridae Intranasal [71]

Extensively drug-resistant 
Acinetobacter baumannii 
(XDRAB ) bacteraemia

Mouse
ΦvB_AbaM_3054 ΦvB_

AbaM_3090
Myoviridae

Intraperitoneal 
injection

[85]

Acinetobacter baumannii 
Bacteraemia

Mouse Endolysin PlyF307 Myoviridae
Intraperitoneal 

injection
[86]

Acinetobacter baumannii and 
Pseudomonas aeruginosa 

Caenorhabditis 
elegans

Engineered Endolysins 
(Artilysins) OBPgp279 

and PVP-SE1gp146
Myoviridae

Bacteriophage 
suspension

[87]

Extraintestinal Escherichia 
coli Ventilator-associated 
Pneumonia

Mice Φ536_P1 and Φ536_P7 Myoviridae
Intranasal 
Instillation

[88]

Streptococcus pneumoniae 
Community- Acquired 
Pneumonia

In vitro ΦSPSL1 Siphoviridae
Bacteriophage 

suspension
[89]

Streptococcus pneumoniae In vitro ΦCp-1 Podoviridae
Bacteriophage 

suspension
[90]

Penicillin-resistant 
Streptococcus pneumoniae

In vitro Endolysins Pal and Cpl-1 Podoviridae
Bacteriophage 

suspension
[91]

Streptococcus pneumoniae 
bacteremia

Mice
Chimeric phage lysin 

Cpl-711 (Cpl-1 and Cpl-
7S)

Podoviridae
Intraperitoneal 

injection
[92]

Staphylococcus aureus Human ΦAB-SA01 Myoviridae Intravenous [93]

Methicillin-resistant 
Staphylococcus aureus 
induced ventilator-associated 
pneumonia

Rat
Cocktail (ΦK, Φ3A, 2002 

and 2003
Myoviridae

Nebulized 
bacteriophages 
(“aerophages”)

[94]

Methicillin-resistant and 
vancomycin-intermediate 
Staphylococcus aureus causing 
acute Pneumonia

Mouse
AB-SA01 Component 

Phages
Myoviridae

Intraperitoneal (IP) 
injection

[95]

Staphylococcus aureus In vitro ΦSA5+Gentamicin Myoviridae
Bacteriophage 

suspension
[96]

Methicillin-
resistant Staphylococcus 
aureus bacteremia

Mouse LysGH15 Myoviridae
Intraperitoneal 

injection
[97]

MRSA Staphylococcus aureus 
septicemia

Mouse
Chimeric lysin 

(ClyS)+Oxacillin
Myoviridae

Intraperitoneal 
injection

[98]

Staphylococcus aureus Mouse
Recombinant phage 

endolysin, SAL-1
Myoviridae

Intravenous 
injection

[99]

Mixed infections by MRSA, 
Vancomycin-Intermediate S. 
aureus (VISA), Streptococcus 
pyogenes and S. pneumoniae

Mice
Endolysin 

PlySs2+Mupirocin
Siphoviridae

Intraperitoneal 
injection

[100]
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biofilm-associated diseases[101]. Aslam et al. reported 
clinical experience with phage therapy combined 
with antibiotics in three patients with life-threatening 
MDR infections caused by Pseudomonas aeruginosa 
and Burkholderia dolosa, two of whom improved[102]. 
According to a researcher, treatment of phage combined 
with ceftazidime appears to eradicate aortic graft 
infection caused by Pseudomonas aeruginosa with 
no evidence of recurrence[103]. An ex vivo study was 
performed on a human airway epithelial cell line model 
to test the efficacy of combined bacteriophage and 
ciprofloxacin treatment in preventing Pseudomonas 
aeruginosa infection, where co-administration 
efficiently prevented bacterial regrowth and maintained 
epithelial cell integrity[104].

Role of bacteriophage lytic enzyme:

Over time, many phage-derived hydrolytic enzymes, 
such as endolysins and ectolysin, have been discovered 
that disrupt the bacterial peptidoglycan cell wall, 
eventually killing the bacteria[105]. The bacterial cell wall 
comprises peptidoglycan polymer chains comprised 
of a disaccharide repeat of glycan strands (N-acetyl 
glucosamine and N-acetylmuramic acid, linked by β 
(1→4) glycosidic bonds). Lysins are glycosidases and 
when employed exogenously in pure forms, they cause 
immediate osmotic lysis and bacterial death. They are 
also referred to as enzybiotics due to their antibacterial 
activity. Lysins kill bacteria rapidly upon contact and 
they are specific to the target pathogen[106]. Furthermore, 
lysin does not disrupt the natural microbiome. Thus, 
resistance development is highly improbable and it can 
be used alone or synergistically with antibiotics[107]. 
Larpin et al. demonstrated in vitro optimal bactericidal 
activity of phage lysin PlyE146 against Escherichia 
coli, Pseudomonas aeruginosa and Acinetobacter 
baumannii strains, making it a promising therapeutic 
agent against infections caused by these bacteria[108]. 
Lysins can be an effective therapeutic tool against 
bacterial infections after standardizing the dose and 
regimen.

Potential role of phage therapy against SARS-
CoV-2:

Phagicin is synthesized during viral (bacteriophage) 
replication and can also be extracted by disrupting 
the phage particles[63]. Phagicin has been shown to 
exhibit antiviral properties (interfering with viral DNA 
intracellular replication) against the Herpes Simplex 
Virus (HSV) and Vaccinia viruses[109]. As a result, its 
antiviral properties make it suitable for use against 

other pathogenic viruses, including SARS-CoV-2. 
According to a researcher, a genetically engineered 
bacteriophage capsid envelops the influenza virus, 
inhibiting it from adhering to lung tissues and thus 
preventing infection[110]. Because the influenza virus 
shares few genomic similarities to that of COVID-19; 
hence, the same could be applied to it. Antiviral drugs 
for COVID-19 (favipiravir and remdesivir) are not 
particularly efficient and their mode of action is by 
inhibiting Ribonucleic Acid (RNA)-dependent RNA 
polymerase[111]. Therefore, they do not halt virus 
attachment to the host cell and do not prevent the 
initial stage of infection (entry of the virus into the 
host cell), causing disruption of the alveolar epithelium 
(Pneumocyte type II)[112]. Also, when phages are 
introduced after a primary viral infection, they often 
compete with the pathogenic virus for the cellular 
receptors and restrict their infectivity[113]. Nuclear Factor 
Kappa B (NF-κB) is a widely expressed transcription 
factor induced by SARS-CoV-2 and is involved 
in inflammatory and immunological responses[114]. 
However, bacteriophages significantly reduce or abolish 
the triggering of NF-κB activation[115]. A respiratory 
pathogen (bacteria and/or viruses) infecting the lung 
is often associated with inflammation and cell death 
caused by excessive production of Reactive Oxygen 
Species (ROS)[116]. However, phage and phage proteins 
inhibit ROS production and exhibit antimicrobial 
activities via anti-oxidant therapy[117]. Another data 
suggests the exploitation of phages where they drive 
antiviral activity by promoting the production of 
antiviral cytokines like Interferon Alpha (IFN-α) and 
Interleukin-12 (IL-12)[115].

Phage display: a technique to counter bacterial and 
viral infection

COVID-19 pandemic has enforced us to explore 
alternative therapies to combat SARS-CoV-2 and 
prevent associated microbial infections. Phage 
display is an alternative to hybridoma technique for 
manufacturing therapeutic Monoclonal Antibodies 
(MABs) against a specific viral or bacterial antigen[118]. 
The phage display technique can be utilized in two ways: 
to decrease the pulmonary bacterial infection and/or to 
efficiently produce antibodies against pulmonary viral 
(COVID-19) infections[119]. It is a method of producing 
phage-displayed vaccines in which a protein gene of 
interest is encoded into the phage coat protein, leading 
the phage to exhibit the protein on the exterior while 
carrying it on the inside. Thus, it can provide SARS-
CoV-2 positive patients more time to build their unique 
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immune response against COVID-19, allowing them 
to escape the damage caused by an overly sensitive 
immune system[65]. Phage display technique has been 
used to isolate specific mAbs against viruses such as 
influenza A[120] and human immunodeficiency virus 
(HIV)[121]. A latest report suggests CR3022 (a SARS-
CoV-1/2 antibody) isolated from a phage display library 
exhibited potent SARS-CoV-2 neutralizing activity 
arising from destabilization of the spike trimer[122]. The 
use of biopanning technique has led to the recognition of 
human monoclonal antibodies (hmAbs) from eight large 
phage-displayed VH, scFv and Fab libraries including 
mAb, IgG1 ab1 targeted against the receptor binding 
domain (RBD) of the spike protein of SARS-CoV-2. 
The IgG1 ab1 effectively neutralized live SARS-CoV-2 
in human angiotensin-converting enzyme 2 (ACE2) 
expressing transgenic mice model[123]. The studies thus 
emphasize the importance of phage display to tackle 
global health issues in the era of COVID-19 and future 
pandemics of constantly emerging and re-emerging 
microbes. It is rightly said that ‘A diamond can cut 
a diamond’, likewise in this prevailing pandemic of 
COVID-19, when even antiviral medicines are not very 
effective, bacteriophages can be a promising tool to 
combat SARS-CoV-2 infections.

CHALLENGES IN PHAGE THERAPY

Bacteriophages are used to treat bacterial infections 
as an alternative to antibiotics with an emerging crisis 
of AMR. Phage cocktails are therefore used to treat a 
broad range of secondary bacterial infections. But, the 
guidelines for the use of bacteriophages have yet to be 
properly formulated, as most of the countries have not 
yet approved invasive phage therapy in humans. Phage 
derived enzymes can also be used, but the dose of 
administration requires proper calibration. Moreover, 
rapid identification of susceptible phages is required 
for implementation of phage therapy, especially against 
secondary infections and AMR bacteria. Phage libraries, 
screening platforms and phage banks need to be 
established for effective phage therapies. There is also 
lack of awareness about bacteriophages therapy because 
of limited clinical trials demonstrating its effectiveness 
and therapeutic cGMP preparation (current Good 
Manufacturing Practice)[124]. Also, phage resistance 
has been observed during single phage application, but 
it can be surpassed when a cocktail of phages is used 
in a sequential approach of administration along with 
standardized formulation and dosage[60].

CONCLUSION

The COVID-19 pandemic is a striking health crisis 
throughout the globe threatening the survival of 
humanity. COVID-19 patients after prolonged 
hospitalizations in ICUs are more vulnerable to 
SARS-CoV-2 infection when paired with super 
added pulmonary infections like ventilator-associated 
pneumonia, bacteremia with sepsis caused by MDR 
nosocomial pathogens resulting in respiratory failure 
and death. Broad-spectrum antibiotics are generally 
recommended to keep these infections at bay especially 
in ICUs, which is further stimulating AMR. The 
irrational use, ill-effects of antibiotics and a lack of 
treatment options for MDR bacterial infections has led 
to resurgence of phage therapy alone or in synergism 
with antibiotics as one of the most promising option 
for treating bacterial infections in this era of AMR. 
Bacteriophages and their lytic enzymes have shown 
great potential in the treatment of bacterial infections 
and studies have also indicated phage mediated 
antiviral immunity by lowering NF-κB activation, ROS 
generation, along with the production of antibodies 
via phage display vaccines. Bacteriophage therapy can 
thus serve as a double edge sword to avert an emerging 
healthcare crunch from COVID-19 and multi drug 
resistant pulmonary bacterial infections. However, 
further exploration is needed to ensure safety protocols 
and efficacy in order to meet the challenges in phage 
therapy and develop appropriate regulations for its 
clinical use in prevention and management of current 
and future pandemics.
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