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Lu et al.: Network Pharmacology of Periplaneta americana (Linnaeus) in Immunocompromised Diseases

We adopted a network pharmacology approach, including the collection of active ingredients through 
literature retrieval, drug target prediction, gene ontology enrichment and Kyoto encyclopedia of 
genes and genomes enrichment, to systematically explore the underlying mechanisms of Periplaneta 
americana (Linnaeus) extracts in the treatment of immunocompromised diseases. A total of 53 
chemical components of Periplaneta americana (Linnaeus) extracts were identified through literature 
retrieval, and 1267 possible therapeutic targets that may improve immune function were predicted 
by the database. Gene ontology analysis results illustrated that the targets of Periplaneta americana 
(Linnaeus) extracts, which enhance immunomodulatory function, were primarily concentrated in 
biological processes such as cellular response to chemical stress, leukocyte cell-cell adhesion, and 
leukocyte migration. Kyoto encyclopedia of genes and genomes analysis demonstrated that the target 
genes were mainly involved in programmed cell death-ligand 1 expression and the programmed 
cell death-1 checkpoint pathway in cancer, T helper 17 cell differentiation, and the nuclear factor 
kappa B signaling pathway. According to protein-protein interaction network analysis, Periplaneta 
americana (Linnaeus) extracts attenuated immunodeficiency effects which may be related to the key 
therapeutic proteins such as epidermal growth factor receptor, heat shock protein 90 alpha family 
class A member 1, RELA, signal transducer and activator of transcription 3, estrogen receptor alpha, 
protein kinase B alpha, inhibitor of kappa light polypeptide gene enhancer in b-cells kinase gamma, 
Erb-B2 receptor tyrosine kinase 2, TANK-binding kinase 1, and mechanistic target of rapamycin. 
This study revealed that the therapeutic effects of Periplaneta americana (Linnaeus) extracts on 
immunocompromised diseases were regulated by interactions among multiple components, targets, 
and pathways.
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Modern pharmacological studies have demonstrated 
that immunosuppression is the root cause of many 
diseases, such as type 2 diabetes, nonalcoholic 
fatty liver disease, upper respiratory tract infection, 
urinary tract infection and irritable bowel syndrome. 
Around the world, due to various causes of congenital 
deficiency or acquired malnutrition, the immune 
function of people against various chronic diseases 
is constantly weakened. Therefore, maintaining the 
immune system in a normal state is important for 
preventing the occurrence of various diseases. This 

version provides a smoother transition and maintains 
clarity.
Traditional Chinese Medicines (TCMs) have been 
used in China for the treatment of various diseases 
for millennia. In recent years, medicinal insects have 
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been shown to modulate immune responses by acting 
directly on immune cells. However, the mechanisms 
of immune-enhancing activity of Periplaneta 
americana (Linnaeus) (Periplaneta americana 
L.) remain unclear due to the complexity of its 
ingredients. Hence, we systematically explored the 
underlying mechanisms of Periplaneta americana 
L. extracts in the treatment of immunocompromised 
diseases based on network pharmacology. This study 
provided an important scientific and theoretical basis 
for the promotion, development and application of 
Periplaneta americana L. 

MATERIALS AND METHODS
Chemical components collection:

There are no relevant chemical constituents of 
Periplaneta americana L. included in the TCMSP 
database. We use “American cockroach” and 
“Periplaneta americana L.” as the keyword to 
retrieve in all databases. 53 compounds were 
collected through literature researchs[1-10]. 

Immunocompromised targets for chemical 
components collection:

The targets of the 53 chemical compounds were 
obtained by consolidating data from databases 
including PharmMapper, SEA, SupePred, 
and SwissTargetPrediction. Subsequently, 
the quest to identify targets associated with 
the immunocompromised properties of active 
compounds encompassed an exploration of databases 
like GeneCards, PharmGKB, and Online Mendelian 
Inheritance in Man (OMIM®). To determine potential 
targets responsible for the immunocompromised 
properties of Periplaneta americana L. extracts, 
the intersection between compound targets and 
immunocompromised targets was considered.

Establishing the Protein-Protein Interaction (PPI) 
network and uncovering key genes：

A PPI network was constructed using the STRING 
platform. To ensure network reliability, overlapping 
genes were uploaded to STRING with 'experiment' 
as the sole active interaction source. A minimum 
interaction score of 0.4 was specified, Homo sapiens 
was selected as the organism, and disconnected nodes 
were hidden to prioritize meaningful interactions. 
The resulting PPI network was visualized using the 
R language. Identification of key genes was achieved 
through the utilization of the Cytohubba plugin for 
Cytoscape 3.9.1, with the top 10 core genes ranked 

according to their degree values.

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses:

Employing the "clusterProfiler" R package, the 
analysis encompassed both GO Enrichment Analysis 
and KEGG pathway analysis. This involved 
investigating the three classic GO subschemas: 
Biological Process (BP), Cellular Component 
(CC), and Molecular Function (MF). Significance 
thresholds for results were determined at p-values 
<0.05 and Q-values <0.05.

Building the interaction network for compounds, 
targets, and pathways:

To construct the interaction network for compounds, 
targets, and pathways, we utilized relevant 
compounds, overlapping targets, and KEGG 
pathways integrated within Cytoscape 3.9.1.

RESULTS AND DISCUSSION
We retrieved 53 results relevant to Periplaneta 
americana L. by conducting keyword searches, 
specifically "American cockroach and Periplaneta 
americana L. ". The chemical structures of these 
compounds, along with their corresponding references 
are displayed in (fig. 1). The total of 1267 chemical 
compound targets is presented in fig. 2, while fig. 3, 
highlights the 1071 immunocompromised targets. 
The intersection of these targets, showcased in fig. 
4, reveals 173 potential targets associated with 
immunocompromised effects.

The STRING database provided data for 104 targets, 
resulting in a PPI network of 57 nodes and 254 edges 
after the removal of disconnected nodes. The PPI 
network visualization in fig. 5, displays genes with 
higher degree values in dark pink and those with 
lower degree values in dark blue. The size of each 
node corresponds to its degree value. The top ten key 
genes, including Epidermal Growth Factor Receptor 
(EGFR), Heat Shock Protein 90 Alpha family class 
A member 1 (HSP90AA1), Nuclear Factor kappa 
B (NF-κB) subunit 3 (RELA, a subunit of NF-κB), 
Signal Transducer and Activator of Transcription 
3 (STAT3), Estrogen Receptor 1 (ESR1), protein 
kinase B (AKT) serine/threonine kinase 1 (AKT1), 
Inhibitor of kappa light polypeptide gene enhancer 
in B-cells Kinase Gamma (IKBKG), Erb-B2 receptor 
tyrosine Kinase 2 (ERBB2), TANK-Binding Kinase 
1 (TBK1), and Mechanistic Target of Rapamycin 
(MTOR), were identified using the cytoHubba 



www.ijpsonline.com

1349Indian Journal of Pharmaceutical SciencesJuly-August 2024

analysis tool according to their degree values.

Fig. 6, illustrates GO annotations for the overlapping 
targets, encompassing BP, CC, and MFs. Notable 
findings from the BP analysis include the dominance 
of cellular response to chemical stress, leukocyte 
cell-cell adhesion, and leukocyte migration. In the CC 
analysis, membrane raft, membrane microdomain, 
and vesicle lumen received the highest rankings. The 
MF analysis highlighted exogenous protein binding, 
protein phosphatase binding, and protein tyrosine 
kinase activity. Regarding the KEGG annotation 
presented in fig. 7, these extracts were found to 
exert immunomodulatory functions associated 

with Programmed cell Death-Ligand 1 (PD-L1) 
expression and the Programmed cell Death-1 
(PD-1) checkpoint pathway in cancer, T helper 17 
(Th17) cell differentiation, and the NF-κB signaling 
pathway. Illustrated in fig. 8, the comprehensive 
network visually portrays the intricate connections 
between compounds, targets, and pathways. Within 
this network, ingredients are symbolized by fuchsia 
diamonds, overlapping targets are represented by 
orange ellipses, pathway codes are denoted by green 
rounded rectangles, and larger shapes correspond to 
larger degree values.

Fig. 1: 53 chemical compound targets of Periplaneta americana extracts
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Fig. 2: Chemical compound targets from four databases

Fig. 3: Immunocompromised targets from three databases

Fig. 4: Overlapping targets of compound targets and immunocompromised targets
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Fig. 6: Top 10 GO enrichment terms by counts-BP, CC, and MF

Fig. 5: PPI network
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Fig. 7: Top 10 KEGG pathway by count

Fig. 8: Comprehensive network of compounds, targets, and pathways
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by elevated PD-1 expression leading to reduced 
responsiveness to tumor cells, share this exhaustion 
pattern with CD4+ T cells and tumor-associated 
macrophages, all displaying heightened PD-1 
expression[22-24]. Recent findings suggest that PD-1 
therapy can enhance antitumor immunity through 
diverse cell-dependent mechanisms, particularly by 
reinvigorating exhausted T cells and reducing PD-
1-related inhibition, thereby improving the body's 
response to tumors[24-26]. NF-κB plays a key role in 
immune responses, activating genes responsible for 
immune functions such as cytokines, chemokines, and 
adhesion molecules[27]. This activation is especially 
vital for expressing cytokine genes in Th17 cells, 
which are instrumental in defending the body against 
extracellular pathogens and fungal infections[28].

In summary, EGFR and ERBB2 may be 
important target proteins in the treatment of 
immunocompromised diseases. Moreover, these 
pathways may be involved in regulating immune 
activity through PD-L1 expression and the 
PD-1 checkpoint pathway in cancer, Th17 cell 
differentiation, and the NF-κB signaling pathway. 
This study elucidated the relationship between the 
main components, targets, pathways, and diseases of 
Periplaneta americana extracts by means of network 
pharmacology. It clarified that the key constituents 
of Periplaneta americana extracts involved in the 
treatment of immunocompromised diseases were 
regulated by a multi-target and multi-pathway 
interaction network. The above findings revealed the 
scientific connotation of medicinal insect usage, and 
provided an important theoretical basis for further 
validation research. 
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