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Chen et al.: Dexmedetomidine on Hypoxic Reoxygenation Injury in Rat Cardiomyocytes

To examine the effect and mechanism of dexmedetomidine pretreatment mediated adenylate adenosine 
monophosphate-activated protein kinase pathway on hypoxic reoxygenation injured rat cardiomyocytes. A 
total of sixty Sprague-Dawley rats were allocated into three groups, namely the sham surgery group, model 
group, and dexmedetomidine intervention group, utilizing a random number table. Each group consisted 
of twenty rats. The model group and the intervention group of dexmedetomidine were used to prepare a 
rat myocardial hypoxia reoxygenation injury model using an improved thread occlusion method. The sham 
surgery group only underwent thoracotomy without ligation, and the intervention group of dexmedetomidine 
was pretreated with dexmedetomidine before establishing the model. Western blot was used to detect adenosine 
monophosphate-activated protein kinase, uncoupling protein 2, and Kruppel-like factor 2 proteins; using flow 
cytometry to detect the average fluorescence intensity of reactive oxygen species; detection of cell apoptosis 
rate using terminal deoxynucleotidyl transferase dUTP nick end labeling method; using the enzyme-linked 
immunosorbent assay detection kit manual to detect serum interleukin-6 and tumor necrosis factor-alpha, 
interleukin-1 beta and the levels of various indicators such as superoxide dismutase and malondialdehyde. 
Adenosine monophosphate-activated protein kinase, Kruppel-like factor 2, and uncoupling protein 2 proteins 
in the myocardium of the model group rats were markedly lower than those of the sham operation group; 
adenosine monophosphate-activated protein kinase, Kruppel-like factor 2, and uncoupling protein 2 in the 
myocardium of rats in the dexmedetomidine intervention group were markedly higher than the model group. 
The superoxide dismutase level of the model group rats was markedly reduced than the sham operation 
group, with malondialdehyde, interleukin-6 and tumor necrosis factor-alpha, interleukin-1 beta was markedly 
higher than that of the sham surgery group; superoxide dismutase, malondialdehyde, interleukin-6 and tumor 
necrosis factor-alpha in the intervention group of dexmedetomidine were markedly higher than the model 
group, tumor necrosis factor-alpha, interleukin-1 beta was markedly reduced than that of the model group. 
Dexmedetomidine can activate adenosine monophosphate-activated protein kinase pathway, upregulation 
of uncoupling protein 2 expressions and the inhibition of mitochondrial reactive oxygen species production 
are observed, thereby restraining the oxidative irritability of myocardial tissue under hypoxia/reoxygenation 
conditions and playing a role in myocardial cytoprotection.
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Ischemic heart disease is a prominent contributor 
to mortality within the realm of cardiovascular 
disease. Percutaneous Coronary Intervention (PCI) 
and coronary artery bypass grafting represent the 
primary therapeutic modalities employed in the 
management of ischemic heart disease, which 
can help people with ischemic heart disease 

achieve myocardial ischemia-reperfusion as soon 
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as possible, prevent myocardial cell death and 
systolic dysfunction, and improve the symptoms 
of myocardial ischemia and hypoxia[1]. However, it 
has been found that myocardial ischemia-hypoxia-
reperfusion therapy itself may aggravate myocardial 
injury, induce cardiomyocyte death, and lead to the 
expansion of ischemic infarction, i.e., myocardial 
ischemia-hypoxia-reperfusion injury[2]. Therefore, 
preventive treatment for patients with reperfusion 
therapy in order to reduce or even avoid myocardial 
ischemia-hypoxia-reperfusion injury has 
important clinical significance in order to enhance 
the clinical prognosis of individuals diagnosed 
with coronary heart disease. Dexmetomide is a 
commonly used anesthetic in clinic, which is 
widely used in adjuvant anesthesia in surgical 
patients and sedation in patients with Intensive 
Care Units (ICU). Research has demonstrated that 
dexmetomide exerts a protective function in the 
context of ischemia-reperfusion injury affecting 
vital organs such as the heart, liver, brain and kidney, 
but the specific mechanism has not been fully 
elucidated[3]. Recent research has demonstrated that 
adenylate Adenosine Monophosphate-activated 
Protein Kinase (AMPK), also known as Adenosine 
Monophosphate (AMP)-dependent protein kinase, 
plays a crucial role in monitoring cellular energy 
equilibrium. Serving as a pivotal kinase in 
orchestrating metabolic processes and maintaining 
energy balance, the activation of AMPK facilitates 
the enhancement of Uncoupling Protein 2 (UCP2) 
expression, consequently impeding Reactive 
Oxygen Species (ROS) generation and mitigating 
oxidative stress-induced damage[4]. The objective 
of this study is to investigate the protective effect 
and underlying mechanism of AMPK pathway 
mediated by dexmedetomidine preconditioning 
on cardiomyocytes of rats with hypoxia-
reoxygenation injury, in order to offer guidance 
for the selection of clinical treatment.

MATERIALS AND METHODS

Materials and reagents:

60 Sprague-Dawley (SD) rats were from Beijing 
Weitong Lihua Experimental Animal Technology 
Co., Ltd. ROS fluorescence detection kit (Abcam 
Biotechnology Co., Ltd.); Erythropoietin (EPO) 
injection (Shenyang Sansheng Pharmaceutical 
Co., Ltd.); AMPK, Kruppel-Like Factor 2 
(KLF2), UCP2, Beta (β)-actin antibody (Abcam 

Biotechnology Co., Ltd.); anti-rabbit second 
antibody, gel electrophoresis preparation kit 
(Shanghai Biyuntian Co., Ltd.). Superoxide 
Dismutase (SOD) and Malondialdehyde (MDA) 
kits were purchased from Nanjing Jiancheng 
Institute of Biological function; Interleukin (IL)-
6, Tumor Necrosis Factor-Alpha (TNF-α), IL-1β 
Enzyme-Linked Immunosorbent Assay (ELISA) 
Kit and Annexin V-Fluorescein Isothiocyanate 
(FITC)/Propidium Iodide (PI) apoptosis kit 
(Shanghai Biyuntian Co., Ltd.).

Animal model:

A total of 60 SD rats were allocated into three 
groups; sham operation group, model group and 
dexmedetomidine intervention group. The rats 
were anesthetized using intraperitoneal injection 
of 1 % pentobarbital sodium at a dosage of 30 mg/
kg, then fixed to the operation board, connected to 
the Electrocardiogram (ECG) and monitored. In the 
dexmetomidine intervention group, dexmetomidine 
5 μg/kg loading dose was given intravenously, and 
then 5 μg/(kg·h) was infused continuously for 1 
h. 0.9 % sodium chloride solution of the same 
volume was given intravenously in the model 
group and the sham operation group. The rat model 
of myocardial hypoxia-reoxygenation injury was 
established by modified thread occlusion method 
in model group and dexmedetomidine intervention 
group. Small animal ventilator was connected 
and endotracheal intubation was performed. The 
muscle tissue was bluntly separated layer by layer 
on the left side of the sternum, the cardiac capsule 
was cut and the heart was exposed. The ligation 
of the left anterior descending coronary artery 
(30 min) occurred at the inferior boundary of the 
left atrial appendage. The successful ligation was 
marked by the whitening of the left ventricle and 
the elevation of ST segment in ECG, and then 120 
min was perfused. The sham operation group only 
opened the chest without ligation.

Sampling and sample preparation:

After the establishment of the model, venous 
blood 5 ml was taken from rats under anesthesia, 
and then the hearts of rats were removed by rapid 
bloodletting, and the left ventricular myocardial 
tissue of rats was removed and washed repeatedly 
with normal saline, half of which was transferred 
to -80° refrigerator for detection; the other 
half of the tissue was embedded in paraffin and 
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stained according to the instructions of Terminal 
Deoxynucleotidyl Transferase dUTP Nick End 
Labeling (TUNEL) kit to detect the rate of 
apoptosis.

ROS fluorescence intensity analysis:

The heart was put into the Eppendorf (EP) tube, 
the tissue was treated by shearing method, the 1 
ml Phosphate-Buffered Saline (PBS) buffer was 
added, the tissue was cut up by ophthalmology, 
and the supernatant from the EP tube was filtered 
by pipette. The cell suspension was passed 
through a flow tube and subsequently stained with 
Dichlorodihydrofluorescein Diacetate (DCFDA), 
incubated with 30 min at 37°, and then added with 
a probe. ROS fluorescence intensity was analyzed 
by flow cytometry. 

Western blot:

After adding protein lysate to homogenate at 4° 
to make 10 % homogenate, the supernatant was 
acquired through the process of centrifugation, 
and the concentration of protein was assessed 
using the Bicinchoninic Acid (BCA) assay 
method, gel was prepared, 90 min electrophoresis 
was done, gel was cut and transferred, and milk 
was sealed. After cleaning, it was incubated with 
primary and secondary antibodies; developed, 
and the data was subjected to analysis using the 
Bio-Rad image laboratory software.

Serological index:

20 min was separated by 3000 r/min in venous 
blood, and the supernatant was reserved for 
examination. IL-6, TNF-α, IL-1β, SOD and MDA 
were detected strictly according to the instructions 
of ELISA detection kit.

Statistical method:

Statistical analysis and processing of data were 

carried out using the Statistical Package for the 
Social Sciences (SPSS) 22.0 statistical software, 
and the measurement information was expressed 
by (x±s), and the comparison was made by t-test. 

RESULTS AND DISCUSSION 
AMPK and KLF2 in myocardium in model 
group were reduced than the sham operation 
group, whereas AMPK and KLF2 in myocardium 
in dexmedetomidine intervention group were 
markedly higher than the model group as shown 
in Table 1.

UCP2 protein in the model group exhibited 
decrease compared to the sham operation group, 
whereas the dexmedetomidine intervention group 
demonstrated increase in UCP2 protein than the 
model group as shown in Table 2. The average 
fluorescence intensity of myocardial ROS and the 
rate of cardiomyocyte apoptosis in the model 
group were markedly higher in comparison 
with the sham operation group, whereas the 
dexmedetomidine intervention group were 
markedly reduced than the model group as shown 
in Table 3.

The level of SOD in the model group was lower 
than the sham operation group, and the level of 
MDA in the model group was higher than the 
sham operation group. The level of SOD in the 
dexmedetomidine intervention group was higher 
than the model group, and MDA in the model 
group was lower than the model group as shown 
in Table 4. 

IL-6, TNF- α and IL-1β in the model group were 
markedly higher than the sham operation group, 
whereas the levels of IL-6, TNF-α and IL-1β in the 
dexmedetomidine intervention group were lower 
than the model group as shown in Table 5.

Group n AMPK KLF2

Sham operation 20 0.68±0.20 0.83±0.35

Model 20 0.40±0.18a 0.59±0.17a

Dexmedetomidine intervention 20 0.62±0.24b 0.76±0.23b

F 10.031 4.474

p 0.000 0.016

Note: Compared to the sham operation group, ap<0.05 and compared to the model group, bp<0.05

TABLE 1: COMPARISON OF AMPK AND KLF2 IN MYOCARDIUM OF RATS IN DIFFERENT GROUPS
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Group n UCP2 cardiac protein expression

Sham operation 20 0.74±0.23

Model 20 0.38±0.12a

Dexmedetomidine intervention 20 0.62±0.19b

F 19.497

p 0.000

Note: Compared to the sham operation group, ap<0.05 and compared to the model group, bp<0.05

TABLE 2: COMPARISON OF UCP2 PROTEIN EXPRESSION IN MYOCARDIUM OF RATS IN DIFFERENT 
GROUPS

Group n Average fluorescence 
intensity expression of ROS

Cardiomyocyte apoptosis 
rate (%)

Sham operation 20 11.57±1.13 3.97±0.83

Model 20 15.81±1.23a 27.51±2.13a

Dexmedetomidine 
intervention 20 13.64±1.15b 18.34±1.25b

F 65.587 1244.37

p 0.000 0.000

Note: Compared to the sham operation group, ap<0.05 and compared to the model group, bp<0.05

TABLE 3: COMPARISON OF ROS AVERAGE FLUORESCENCE INTENSITY AND CARDIOMYOCYTE 
APOPTOSIS RATE AMONG DIFFERENT GROUPS OF RATS

Group n SOD (kU/g) MDA (μmol/g)

Sham operation 20 88.38±14.32 4.14±1.13

Model 20 51.52±12.49a 8.23±2.69a

Dexmedetomidine 
intervention 20 64.28±14.39b 6.34±1.47b

F 37.033 23.553

p 0.000 0.000

Note: Compared to the sham operation group, ap<0.05 and compared to the model group, bp<0.05

TABLE 4: COMPARISON OF OXIDATIVE STRESS INDEXES IN RATS OF EACH GROUP

Group n IL-6 (μg/l) TNF-α (ng/l) IL-1β (pg/l)

Sham operation 20 97.86±11.28 50.71±8.22 9.34±1.76

Model 20 180.28±18.04a 170.33±17.11a 30.28±4.84a

Dexmedetomidine 
intervention 20 150.37±16.09b 121.41±13.14b 16.36±2.13b

F 146.788 407.156 219.423

P 0.000 0.000 0.000

Note: Compared to the sham operation group, ap<0.05 and compared to the model group, bp<0.05

TABLE 5: COMPARISON OF SERUM INFLAMMATORY INDEXES IN RATS OF EACH 
GROUP
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stress, and mitochondrial function disorder and 
Deoxyribonucleic Acid (DNA) damage are caused. 
Activation of apoptotic protease to promote 
cardiomyocyte apoptosis[11]. As an endogenous 
neuroprotective factor, endogenous protective 
protein plays a protective role in myocardium 
after acute hypoxic-ischemic injury by means of 
antioxidant stress, inhibition of apoptotic body 
formation and clearance of ROS[12]. Numerous 
types of endogenous protective proteins, such 
as uncoupling protein, heat shock protein, and 
neuroglobin, are expressed within myocardial 
tissue[13]. UCP2 is classified as a mitochondrial 
inner membrane protein that actively engages 
in the facilitation of proton transport within 
the mitochondrial inner compartment, reduces 
the transmembrane proton gradient through 
uncoupling, and has the function of dissociating 
oxidative phosphorylation coupling of respiratory 
chain. UCP2 has the functions of regulating ATP 
production, mitochondrial function, regulating 
thermogenesis, apoptosis and oxidative stress 
response by this intervention demonstrates a 
notable protective impact on the myocardium[14]. 
It is found that UCP2 can increase the proton 
permeability of mitochondrial inner membrane, 
reduce ΔμH+, and reduce the production of ROS 
through the "proton pump" mechanism, so as to play 
the role of antioxidant stress, weaken the oxidative 
stress and reduce the death of cardiomyocytes[15]. 
Previous research has indicated that AMPK, an 
upstream protein of UCP2, serves as the primary 
regulator of cellular energy metabolism. The 
elevation of the AMP/ATP ratio in hypoxic-
ischemic myocardium results in the activation 
of AMPK, thereby enhancing the efficacy of 
cellular oxidative phosphorylation. This, in turn, 
triggers the activation of UCP2 and augments the 
expression of UCP2[16]. The findings of this study 
indicate decrease in the UCP2 protein in the model 
group than the sham operation group. Furthermore, 
the dexmetomidine intervention group exhibited 
increase in the UCP2 protein compared to the 
model group. The average fluorescence intensity 
of myocardial ROS and the rate of cardiomyocyte 
apoptosis in the model group were markedly 
higher than the sham operation group, whereas 
the average fluorescence intensity of myocardial 
ROS and the rate of cardiomyocyte apoptosis in 
the dexmedetomidine intervention group were 
markedly reduced than the model group. The SOD 

Ischemic heart disease is a kind of cardiovascular 
disease caused by acute and persistent myocardial 
ischemia and hypoxia on the basis of sharp 
decrease or even interruption of vascular blood 
supply caused by coronary artery disease. It 
is related to many factors such as overwork, 
emotional agitation, cold stimulation, overeating 
and so on[5]. The condition of patients with ischemic 
heart disease changes rapidly, and chest pain can 
be relieved in mild cases, but in severe cases, it 
is feasible to encounter complexity when dealing 
with severe complications such as cardiogenic 
shock, which affects the life, health and safety 
of patients[6]. At present, PCI and coronary artery 
bypass grafting are the main methods for the 
treatment of myocardial infarction, which can help 
patients with myocardial infarction to achieve 
myocardial ischemia-reperfusion as soon as 
possible. However, although the myocardial blood 
supply of some patients recovered after reperfusion 
treatment, the infarct area did not decrease, but 
further enlarged, suggesting that myocardial 
ischemia-hypoxia-reperfusion injury occurred, and 
resulting in an increase in mortality[7]. Therefore, 
taking scientific and effective treatment measures to 
prevent myocardial hypoxia-reoxygenation injury 
is instrumental in enhancing the prognosis of 
individuals afflicted with myocardial infarction. 
It has been found that after the occurrence of 
hypoxic-ischemic myocardial injury, the body 
initiates a series of sequence reactions, including 
apoptosis, inflammation, disturbance of energy 
metabolism, oxidative stress and so on[8,9].

Mitochondria serve as the central regulatory 
hub for cellular oxidative stress and energy 
metabolism, earning them the moniker "the 
cellular powerhouses". In the process of 
oxidative phosphorylation of mitochondria with 
oxygen, a small number of electrons leaked 
from the respiratory chain are easy to combine 
with oxygen to form ROS[10]. In myocardial 
infarction, myocardial ischemia and hypoxia 
lead to the decrease of Adenosine Triphosphate 
(ATP) production in mitochondria, which leads 
to the initiation of apoptosis cascade including 
ion imbalance, resulting in the production of 
ROS and the aggravation of oxidative stress after 
ischemia-reperfusion. When the production of 
ROS exceeds the scavenging capacity of cell 
antioxidant system, the balance of oxidation and 
antioxidation is broken, cells undergo oxidative 
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angiogenesis and protect cardiomyocytes from 
ischemia and hypoxia by promoting the AMPK 
protein and up-regulating KLF2[20]; in addition, 
dexmedetomidine can induce the phosphorylation 
of AMPK, increase the activity of mitochondrial 
enzyme, increase the expression level of UCP2, 
activate mitochondrial uncoupling, reduce 
the production of mitochondrial ROS, reduce 
oxidative stress induced by myocardial ischemia-
reperfusion injury and provide a protective effect 
on the myocardium[21].

In conclusion, dexmetomidine has the ability 
to enhance UCP2 protein and suppress the 
generation of mitochondrial ROS through the 
activation of the AMPK pathway, so as to reduce 
the oxidative stress of myocardial tissue under 
hypoxia/reoxygenation and play a protective role 
in cardiomyocytes.
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