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Lu et al.: Protective Effect of Curcumin on Cardiomyocyte Hypertrophy

To study the protective effect of curcumin on lipopolysaccharide-induced rat cardiomyocyte hypertrophy is 
the main objective of the study. Cardiomyocytes were purified and cultured by differential adherence in in 
vitro and then they were divided into control group, lipopolysaccharide group, lipopolysaccharide+curcumin 
low-dose (12.5 mg/l) group, lipopolysaccharide+curcumin medium-dose (25 mg/l) group and 
lipopolysaccharide+curcumin high-dose (50 mg/l) group. The morphological changes were observed under 
a phase-contrast inverted microscope and the cell volume was measured. The total protein content of the 
cell was detected by Coomassie brilliant blue kit. Enzyme-linked immunosorbent assay method was used to 
detect the level of tumor necrosis factor alpha. The TILL imaging system was used to observe the changes 
in intracellular calcium ions. Compared with the control group, lipopolysaccharide significantly increased 
the cardiomyocyte volume, the total cell protein content, the level of tumor necrosis factor alpha (p<0.01) 
and the instantaneous peak of calcium ions. Compared with the lipopolysaccharide group, 12.5, 25, 50 mg/l 
curcumin treatment inhibited the increase of cardiomyocyte volume, total protein content, tumor necrosis 
factor alpha level and the instantaneous peak of calcium ions induced by lipopolysaccharide and showed 
a dose-dependent effect. Curcumin has a protective effect on rat cardiomyocyte hypertrophy induced by 
lipopolysaccharides, which may be related to the inhibition of tumor necrosis factor alpha production and 
the inhibition of calcium ions overload. 
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Cardiomyocyte hypertrophy is an independent risk 
factor for many cardiovascular diseases and a common 
complication of these diseases[1]. Cardiomyocyte 
hypertrophy mainly occurs when the heart is chronically 
overloaded. Early cardiomyocyte hypertrophy 
has a certain compensatory significance and later 
decompensation, seriously affects cardiomyocyte 
function and can cause heart failure in severe cases[2]. 
Therefore, prevention and reversal of cardiomyocyte 
hypertrophy has always been one of the key topics in 
the field of cardiovascular research.

Lipopolysaccharide (LPS) is a component of the outer 
wall of the cell wall of Gram-negative bacteria and 
is a substance (glycolipid) composed of lipids and 
polysaccharides[3]. LPS is difficult to shed from the cell 
wall. When bacteria die, it will shed from dissolving 
and destroying bacteria, and exerts its toxicity by 
acting on the functional cells of the body. Due to this 
nature, it is also called endotoxin. When it acts on other 

biological cells of humans or animals, it will exhibit a 
variety of biological activities. The physiological role 
of LPS is triggered by the Toll-Like Receptor 4 (TLR4) 
present on the cell membrane surface[3,4]. When LPS is 
released into the blood in large quantities, it can cause 
endotoxemia, extensive uncontrolled inflammation and 
immune response in the body, which results in shock, 
systemic inflammation and multiple organ failure[5-8]. 
For the heart, LPS can weaken cardiomyocyte 
contractility and slower heart rate, which seriously 
affects heart function[9,10]. In vitro LPS can induce 
cardiomyocyte hypertrophy and the cell model is 
widely used in scientific research[11,12].
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Curcumin is an active ingredient extracted from the 
rhizomes of turmeric. It can scavenge oxygen free 
radicals[13], reduce cardiomyocyte damage caused 
by ischemia and hypoxia[14], and inhibit ventricular 
remodeling after infarction[15], improve heart 
function[16]. However, the influence of curcumin on 
the cardiomyocyte hypertrophy is still unclear. In this 
study, rat cardiomyocyte hypertrophy was induced 
by LPS in vitro and cell model was treated with 
different concentrations of curcumin. The protective 
effect of curcumin on LPS-induced rat cardiomyocyte 
hypertrophy and its possible mechanism were explored.

MATERIALS AND METHODS

Primary culture of rat cardiomyocytes:

The animal experiments were approved by the 
Institutional Animal Care and Use Committee of 
Nantong University. 6 newborn, 1-2 d Sprague Dawley 
(SD) rats (male or female) were provided by the 
Experimental Animal Center of Nantong University. 
The hearts were removed under aseptic conditions and 
cleaned with D-Hank’s solution, and then the large 
blood vessels and atrial tissue connected to the heart 
were removed, and then they were cut into small tissue 
pieces with ophthalmological scissors. The small tissue 
pieces were repeatedly pipetted with 0.08 % trypsin, 
digested at 37° for 10 min and the supernatant were 
discarded. The tissue was then digested with 0.08 
% trypsin for 3 to 4 times to get the cells. The cells 
were cultured in culture flask containing Dulbecco’s 
Modified Eagle Medium (DMEM), placed in a 37°, 
5 % Carbon dioxide (CO2) incubator and cultured for 
1.5 h. Subsequently, the non-adherent cardiomyocyte 
suspension was sucked out with a pipette and then was 
cultured in a culture flask at a cell density of 4×108/l, 
and placed in a 37°, 5 % CO2 incubator for 48 h.

Drug treatment:

The curcumin (Sigma, United States of America (USA)) 
solution was prepared with normal sodium containing 
5 % ethanol. The above-mentioned primary cultured 
cardiomyocyte were cultured in the 24-well culture plate 
equipped with a cover glass and containing DMEM for 
24 h. The cells were divided into control group, LPS 
group, LPS+curcumin low-dose group, LPS+curcumin 
medium-dose group and LPS+curcumin high-dose 
group. The DMEM of LPS group, LPS+curcumin low-
dose group, LPS+curcumin medium-dose group and 
LPS+curcumin high-dose group contained LPS 1 mg/l 
and curcumin 0 mg/l (control), 12.5 mg/l, 25 mg/l, 50 
mg/l respectively. The DMEM of control group and LPS 

group contained the equal concentration of ethanol.

Morphological observation and cell volume 
measurement:

After the cells were cultured for 24 h, the morphological 
changes of each group of cells were observed under a 
phase-contrast inverted microscope and filmed. Each 
culture well randomly selects 4 fields of 200 times and 
the computer cell image analysis system measures the 
diameter of the cell, and then calculates the volume of 
the cell.

Determination of total protein content in 
cardiomyocyte:

The total protein content in cardiomyocyte was detected 
by Coomassie brilliant blue kit (Beyotime, China) 
according to the protocol of the product manual.

Determination of Tumor Necrosis Factor alpha 
(TNF-α) level:

The TNF-α level in medium of each group was 
measured by TNF-α Enzyme-Linked Immunosorbent 
Assay (ELISA) detection kit (Beyotime, China).

Calcium (Ca2+) ions transient change measurement:

The culture medium of each group was replaced with 
DMEM medium containing Fura-2/Acetoxymethyl 
Ester 3 (AM3) μmol/l and 0.2 % albumin and incubated 
them in a 37° water bath for 0.5 h. The (Ca2+) ions 
transient change was detected by TILL imaging system 
(Martinsried, Germany). The emission wave length was 
505 nm, the excitation wave length was 340 nm and 
380 nm and the sampling interval was 300 ms.

Statistical analysis:

Statistical Package for the Social Sciences (SPSS) 21.0 
statistical software was used for statistical analysis of 
the data in this study. The measurement data in this 
study was in accordance with the normal distribution, 
expressed as mean±Standard Deviation (SD), the 
comparison among groups was performed by one-way 
Analysis of Variance (ANOVA) and the difference was 
considered statistically significant with p<0.05.

RESULTS AND DISCUSSION

The effect of curcumin on the volume of cardiomyocyte 
cells were shown in fig. 1. In the white field of vision, 
the shape of cardiomyocytes is polygonal, fusiform or 
irregular triangle (fig. 1A). Compared with the control 
group, the volume of cardiomyocytes in the LPS 
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group increased significantly (p<0.05). The volume 
of cardiomyocyte in the LPS+curcumin 12.5 mg/l, 
25.0 mg/l and 50.0 mg/l groups gradually decreased 
with the increase of curcumin dose and the volume of 
cardiomyocyte in the LPS+curcumin 50.0 mg/l group 
were close to that of the control group (fig. 1B).
The effect of curcumin on the total protein content 
of cardiomyocyte cells were shown here. Compared 
with the control group, the total protein content of 
cardiomyocytes in the LPS group was significantly 
increased (p<0.05). The total protein content of 
cardiomyocytes in the LPS+curcumin 12.5 mg/l, 25.0 
mg/l and 50.0 mg/l groups gradually decreased with the 
increase of curcumin dose and the total protein content 
of cardiomyocyte in the LPS+curcumin 50.0 mg/l 
group were close to that of the control group (fig. 2).
The effect of curcumin on the TNF-α level of 
cardiomyocyte cells were explained here. Compared 

with the control group, the TNF-α level of 
cardiomyocytes in the LPS group was significantly 
increased (p<0.05). The TNF-α level of cardiomyocytes 
in the LPS+curcumin 12.5 mg/l, 25.0 mg/l and 50.0 
mg/l groups gradually decreased with the increase of 
curcumin dose, and the TNF-α level of cardiomyocyte 
in the LPS+curcumin 50.0 mg/l group were close to 
that of the control group (fig. 3).
The effect of curcumin on the (Ca2+) ions transient 
change in cardiomyocyte cells were explained here. 
Compared with the control group, the (Ca2+) ions 
peak amplitude of cardiomyocytes in the LPS group 
increased (p<0.05); the (Ca2+) ions peak amplitude of 
cardiomyocytes in the LPS+curcumin 12.5 mg/l group, 
LPS+curcumin 25 mg/l and LPS+curcumin 50 mg/l 
was lower than that in the LPS group (p<0.05). With 
the increase of curcumin dose, the (Ca2+) ions peak 
amplitude of cardiomyocytes decreased (fig. 4).

Fig. 1: The effect of curcumin on the volume of cardiomyocyte cells, * vs. control group, p<0.05; # vs. LPS group, p<0.05 and @ vs. LPS+curcumin 
12.5 mg/l group, p<0.05. Bar=100 μm
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Fig. 2: The effect of curcumin on the total protein content of cardiomyocyte cells. * vs. control group, p<0.05; # vs. LPS group, p<0.05 and @ vs. 
LPS+curcumin 12.5 mg/l group, p<0.05

Fig. 3: The effect of curcumin on the TNF-α level of cardiomyocyte cells. * vs. control group, p<0.05; # vs. LPS group, p<0.05; @ vs. LPS+curcumin 
12.5 mg/l group, p<0.05 and & vs. LPS+curcumin 25.0 mg/l group, p<0.05
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LPS or endotoxin is a component in the cell wall of 
Gram-negative bacteria and is the main pathogenic 
component. LPS can activate the immune and 
inflammatory response system in the body, causing 
extensive damage to the body and the heart is the most 
vulnerable organ[16]. Most patients with endotoxemia, 
have symptoms of cardiac insufficiency, which lead 
to cardiomyocyte hypertrophy[17]. Many studies have 
shown that LPS can induce cardiac hypertrophy, 
increase the total protein content of cardiomyocyte 
and increase the volume of cardiomyocyte[18,19]. The 
results of this study also showed that LPS induced the 
rat cardiomyocyte hypertrophy in vitro, which was 
consistent with other studies.
It is currently believed that the pathogenic mechanism 
of the body damage caused by LPS is involved in 
multiple signal transduction pathways mediated 
by TLR4[20,21]. TNF-α is one of its downstream 
signals[22,23]. The results of this study showed that, 
while LPS induced rat cardiomyocyte hypertrophy, 
it also promoted the high expression of TNF-α in 
cardiomyocyte. TNF-α has a variety of biological 
effects and can induce cardiomyocyte hypertrophy 
through the biological pathways as followed: It 
interacts with the renin-angiotensin system and causes 
the proliferation of reactive oxygen intermediates, 
thereby inducing cardiomyocyte hypertrophy[24]; it can 
also interact with Interleukins (IL-1 and IL-6), etc., to 
cause cardiomyocyte hypertrophy[25].

Intracellular Ca2+ plays a central role in cardiac 
hypertrophy. Studies have shown that the increase of 
intracellular Ca2+ signal can activate many downstream 
signal factors, promote the expression of related genes 
and produce cardiomyocyte hypertrophy[26]. The results 
of this study showed that LPS induced an increase in the 
instantaneous peak of (Ca2+) ions in cardiomyocytes. It 
may be related to the decrease in the activity of Sodium-
Potassium Adenosine Triphosphatase (Na+-K+-ATPase) 
in cardiomyocytes caused by LPS and cause the 
retention of Sodium ions (Na+) in the cell. Due to the 
increase in the intracellular Na+, a large amount of Ca2+ 
flows into the cell through the exchange of Na+-Ca2+-
ATPase and intracellular Ca2+ pumping decreases due 
to the Ca2+-ATPase activity decreases, which eventually 
leads to intracellular Ca2+ overload. In addition, studies 
have shown that LPS induced high expression of TNF-α 
in cardiomyocytes which can also promote the increase 
of intracellular Ca2+ concentration[27].
Curcumin is an active ingredient extracted from the 
rhizome of turmeric. It belongs to polyphenols and 
consists of two O-methylated phenols and one beta-
diketone (β-diketone)[28]. As a traditional Chinese 
medicine component, curcumin can regulate numerous 
cellular metabolic pathways and signal transduction 
pathways. A large number of clinical medical studies 
have shown that curcumin has a wide range of 
pharmacological effects such as anti-tumor[29], lowering 
blood lipids[30], anti-inflammatory[31], anti-oxidation[32], 

Fig. 4: The effect of curcumin on the (Ca2+) ions transient change in cardiomyocyte cells. * vs. control group, p<0.05; # vs. LPS group, p<0.05 and 
@ vs. LPS+curcumin 12.5 mg/l group, p<0.05
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anti-atherosclerosis[33] and scavenging free radicals[13]. It 
also has preventive effects on many diseases. Its attribute 
is mild, so there is no obvious toxic and side effects after 
long-term use[34-37]. The results of this study showed that 
compared with the LPS group, the treatment of 12.5, 25 
and 50 mg/l of curcumin could inhibit the increase of 
cardiomyocyte cell volume, reduce the increase of total 
cell protein content and inhibit the increase of TNF-α 
expression level and increase in the instantaneous peak 
of (Ca2+) ions induced by LPS, and showed a dose-
dependent effect. The specific mechanism needs further 
study in the following days.
In summary, curcumin has a protective effect on rat 
cardiomyocyte hypertrophy induced by LPS, which 
may be related to the inhibition of TNF-α production 
and the inhibition of Ca2+ overload. This provides an 
experimental basis for applying curcumin to treat 
cardiomyocyte hypertrophy.
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