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Sahu et al.: A Review: An Insight on Recent Advancement of Pyridine Moiety in Treatment of Cancer

Pyridine is an imperative pharmacophore, a privileged scaffold and an exceptional heterocyclic system in 
the field of drug discovery which provides many opportunities in study/explore this moiety as an anticancer 
agent by acting on various receptors of utmost importance. Several pyridine derivatives are reported to 
inhibit tubulin polymerization, androgen receptors, human carbonic anhydrase, kinase, topoisomerase 
enzyme and many other targets for controlling and curing global health issue of cancer. Now a days in 
combination with other moieties researchers are focusing for development of pyridine new entities for 
the treatment of cancer. This review throws light on recent biological expansions of pyridine along with 
their structure activity relationships/molecular docking to deliver association between various synthesized 
newer derivatives and receptor sites.
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Cancer is a global health issue that affects a vast 
portion of the human population and is regarded as 
the uncontrolled growth of cells in the body, which is 
one of the most challenging and complex diseases to 
treat[1,2]

. It is considered as another major cause of the 
death after cardio vascular disorders worldwide[3]. In 
2018, world health organization (WHO) reported that 
18.1 million people around the globe had cancer and 
9.6 million deceased from the disease. By 2040, these 
records will nearly twice, with the highest increase in 
low and middle income countries, where greater than 
two thirds of the world’s tumors will occur[4]. Cancer 
is the cause of almost 30 % of all hasty deaths from 
non-communicable diseases among adults aged 30 to 
69. Among all, the most frequently diagnosed cancer 
is lung (11.6 % of all cases), followed by female breast 
(11.6 %) and colorectal cancers (10.2 %). Lung cancer 
is the foremost cause of death from cancer (18.4 % of 
all deaths), followed by colorectal (9.2 %) and stomach 
cancers (8.2 %). The most usual cause of cancer is 
tobacco usage, which accounts for 25 % of all cancer 
deaths around globally. Hence cancer is a serious issue 
hampering human health. So, as to tackle them new 
various anticancer agents are being developed ever now 
and then. Still their toxicity profile has restricted their 
clinical use as anticancer agents[5]. Therefore, further 
exploration of new chemo therapeutic agents with great 

efficacy and least adverse effects is critically essential 
for medicinal chemists.

Anticancer drugs are categorized into several groups 
based on their mechanism of action that is biosynthetic 
blocker of nucleic acid, transcription interferer, 
structural and functional of Deoxyribonucleic acid 
(DNA) interferer, interferer of protein synthesis and 
function, influencer of hormone homeostasis; or 
modulator of immune system[6]. To decrease toxic 
effects of antitumor agents towards normal cells, specific 
targeted drug therapy is chosen which is considered 
to hit tumor cells only[7]. As specified by the USA 
national cancer institute drug repository, 227 endorsed 
antitumor treatments are at present avowed to treat 
roughly 40 types of malignancies[6,8]. Because of great 
demand of antitumor medications (tons/y) investigators 
are going on in the way to develop new and effective 
treatment for tumor[8]. For this reason some researchers 
or scholars looked into the effect produced by various 
compounds containing pyridine moiety.
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Pyridine compounds (fig. 1) are well defined by the 
presence of a six membered heterocyclic ring with the 
chemical formula C5H5N, comprising of five carbon 
atoms and one nitrogen atom. In many aspects it can 
be correlated to well recognized and fundamental 
aromatic benzene molecule, with one C-H group 
changed by a nitrogen atom. It was first isolated from 
bone oil and coal tar and characterized by Anderson in 
1846. The cyclic nature of pyridine was identified by 
Dewar and Korner in 1869[9]. It plays an important role 
by catalyzing both biological and chemical systems[10]. 
It has a conjugated arrangement of six π electrons 
precisely as benzene has, that are delocalized about 
the heterocyclic ring. The molecule is planar in nature 
and follows Huckel standards for aromaticity[11,12]. 
Additionally, pyridines are a class of both synthetically 
and naturally occurring heterocyclic compounds and 
its nucleus is a well-studied six membered heterocyclic 
moiety with a wide range of biological and therapeutic 
applications[13-15]. Moreover, the current interest in the 
development of new anticancer agents can be partially 
ascribed to the increasing appearance of multidrug 
resistance and adverse side effects are a serious threat 
to public health[16-18]. Therefore, the development of 
new and efficacious medications is a very significant 
goal and most of the researcher’s efforts in this field are 
directed towards the design of new agents. It is reported 
that some important anticancer drugs possess a pyridine 
nucleus. Thus, this study gives promising compounds 
possessing a pyridine nucleus that can be investigated 
for future in vivo and clinically oriented studies[19-21]. 
Some of the physical properties and marketed products 
of pyridine containing antitumor drugs are mentioned 
in Table 1[22] and Table 2[23], whereas in Table 3[24-50] 

patents on pyridine are mentioned respectively.

ANTICANCER PROFILE OF PYRIDINE 
BASED DERIVATIVES

Recently reported some synthetic new compounds that 
have a promising and potential activity against cancer 
cells and has pyridine moiety as essential part in those 
structure are mentioned here along with their structure 
activity relationship (SAR) or molecular docking or 
both studies and acting targets or inhibitory target. 

Migration and Ras related C3 botulinum toxin 
substrate 1 (RAC1) inhibitors:

A cancer cell finishes a series of stages including 
migration from the primary cancer, surrounding 
tissues invasion and intravasation through basement 
membranes, survival during circulation and arrest 
at a distant target organ[51]. The Ras-related C3 
botulinum toxin substrate 1 (RAC1) gene activates 
multiple signaling pathways that lead to uncontrolled 
proliferation, is a member of the Ras-related C3 
botulinum toxin substrate (RAC) subfamily of 
guanosine triphosphate enzyme (GTPase). It has been 
involved in the regulation of cellular migration and 
invasion in breast tumor cells. Rac1 is activated by 
Guanine nucleotide exchange factors (GEFs) that are 
regulated by many of cell surface receptors. Hence, 
therapeutic approaches that inhibit binding of GEFs 
to Rac1 are a rational means to migration inhibition of 
cancer cells[52-55].

Vlaar et al.[56] explored a carbozole derivatives in order 
to develop new anti-migratory agents to prevent the 
malignance cell spreading by inhibiting migration and 
RAC1. Compounds 1a and 1b (fig. 2) inhibit migration 
activity of metastatic cell line MDA-MB-231 (Breast 
carcinoma cell line) by 32 % and 34 %, respectively. 
Furthermore compound 1b was shown to inhibit 
activation of the Ras homologous (Rho) GTPase Rac1 
by 55 % at 0.25 μM in both MDA-MB-231 and MDA-
MB-435 (Breast carcinoma cell line) cell lines.

Indoleamine 2,3-dioxygenase 1 inhibitors: 

The metabolism of Tryptophan (Trp) occurs through 
two independent pathways: the kynurenine pathway 
(KP) that comprises of the oxidative ring opening of the 
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Fig. 1: Chemical structure of pyridine

Formula Molecular weight Density Melting point Boiling point Refractive Index solubility

C5H5N 79.102 Da 0.9819 g/
ml −41.6º 115.2º 1.5093

Miscible in all proportions with 
water and most common organic 

solvents

TABLE 1: A PHYSICAL PROPERTY OF THE PYRIDINE [22]
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S. No. Drug Brand and company
Primary 
target

Food and drug 
administration 
(FDA) approval

Structure

1. Apalutamide
ERLEADA, Janssen 

Biotech Inc.

Androgen 
receptor 
inhibitor

In September, 2019
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2. Pexidartinib
TURALIO, Daiichi 

Sankyo
Kinase 

inhibitor
In August, 2019
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3. Alpelisib
PIQRAY, Novartis 
Pharmaceuticals 
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Kinase 
inhibitor

In May, 2019
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4. Venetoclax
VENCLEXTA, AbbVie 
Inc. and Genentech 

Inc.
BCL-2 inhibitor In May, 2019
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5. Ivosidenib
TIBSOVO, Agios 

Pharmaceuticals Inc.
IDH1 inhibitor In May, 2019 Cl
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6. Lorlatinib
LORBRENA, Pfizer 

Inc.
Kinase 

inhibitor
In November, 2018
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7. Netarsudil
RHOPRESSA, Aerie 
Pharmaceuticals

Rho kinase

inhibitor
In December, 2017
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8. Acalabrutinib
CALQUENCE, 
AstraZeneca

Kinase 
inhibitor

In October, 2017
CH3
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N

N N
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O
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N

H

 

TABLE 2: APPROVAL OF MORE RECENTLY MARKETED DRUGS CONTAINING PYRIDINE [23]
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9.
Abemaciclib

VERZENIO, Eli Lilly 
and Company

Kinase 
inhibitor

In September, 2017
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10. Enasidenib
IDHIFA, Celgene 

Corp.
IDH2 inhibitor In August, 2017
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11. Neratinib
NERLYNX, Puma 

Biotechnology Inc.
Kinase 

inhibitor
In July, 2017.

CH3 O
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O
N

CH3

CH3
NH

O
N

Cl

N
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S.No. Patent no. Patent date Inventors Description

1. WO2020039097A1 
[24] February 27, 2020

Zoe Cournia, Argiris Efstratiadis, Anna 
Kapella, Elias Couladouros, Savvas 

Christoforidis

2,6-bis(((1h-benzo[d]imidazol-
2-yl)thio)methyl)pyridine and 
n2,n6-dibenzylpyridine-2,6-

dicarboxamide derivatives and 
related compounds as PI3K 

inhibitors for treating cancer

2. US20200062754A1 
[25] February 27, 2020 Xiong Cai, Changgeng Qian, Haixiao 

Zhai
Fused amino pyridine as hsp90 

inhibitors

3. WO2020039060A1 
[26] February 27, 2020

Carsten Schultz-Fademrecht, Bert 
Klebl, Peter Nussbaumer, Carsten 

Degenhart, Matthias Baumann

4-substituted pyrrolo[2,3-b]
pyridine as erbb modulators 
useful for treating cancer

4. WO2020033288A1 
[27] February 13, 2020

Michelle Machacek, David Witter, 
Craig Gibeau, Chunhui Huang, Shuhei 
Kawamura, David L. Sloman, Phieng 
Siliphaivanh, Ryan Quiroz, Murray 
Wan, Sebastian Schneider, Charles 
S. Yeung, Michael H. Reutershan, 

Timothy J. Henderson, Jean-Laurent 
Paparin, Houcine Rahali, Jonathan M. 
E. Hughes, Sulagna Sanyal, Yingchun 
Ye, David A. Candito, Patrick S. Fier, 

Steven M. Silverman

PRMT5 inhibitors

5. WO2020030925A1 
[28] February 13, 2020

Peter Blencowe, Mark Charles, 
Andrew Cridland, Tennyson Ekwuru, 

Robert Heald, Ellen Macdonald, Hollie 
Mccarron, Laurent Rigoreau

Heterocyclic substituted ureas, 
for use against cancer

6. US20200040002A1 
[29] February 06, 2020 Yun-Long Li, Wenyu Zhu, Song Mei, 

Joseph Glenn
Tricyclic fused thiophene 

derivatives as JAK inhibitors

7. US20200022983A1 
[30] January 23, 2020

Jay Copeland Strum, John E. Bisi, 
Patrick Joseph Roberts, Jessica A. 

Sorrentino

Treatment of RB-negative 
tumors using topoisomerase 

inhibitors in combination with 
cyclin dependent kinase 4/6 

inhibitors

TABLE 3: RECENTLY PATENTED DRUGS THAT CONTAIN PYRIDINE IN THEIR PRIMARY STRUCTURE 
HAVE ANTICANCER ACTIVITY
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8. CN110698491A [31] January 17, 2020
Zhang Sanqi, Fan Ye, Cao Yongxiao, 

Shen Ying, Yang Xueyan, Xin Minxing, 
Cao Lei

2- (camptothecin-10-oxyl) 
acetamide compound and 

application thereof

9. WO2020014465A1 
[32] January 16,2020 Alfredo C. Castro, David T. Jonaitis Polymorphic compounds and 

uses thereof

10. US20200010458A1 
[33] January 09,2020

Noriyasu Haginoya, Takashi Suzuki, 
Miho Hayakawa, Masahiro Ota, 
Tomoharu Tsukada, Katsuhiro 

Kobayashi, Yosuke Ando, Takeshi 
Jimbo, Koichi Nakamura

Pyridone derivatives having 
tetrahydropyranylmethyl groups

11. US20200010420A1 
[34] January 09, 2020

Janet L. Gunzner-Toste, Daniel 
Sutherlin, Mark S. Stanley, Liang Bao, 

Georgette M. Castanedo, Rebecca 
L. Lalonde, Shumei Wang, Mark E. 

Reynolds, Scott J. Savage, Kimberly 
Malesky, Michael S. Dina, Michael F.T. 

Koehler

Pyridyl inhibitors of hedgehog 
signalling

12. US20200002310A1 
[35] January 02, 2020

Michael Joseph Luzzio, Kevin 
Daniel Freeman-Cook, Samit Kumar 

Bhattacharya, Matthew Merrill 
Hayward, Catherine Angela Hulford, 

Christopher Lowell Autry, Xumiao 
Zhao, Jun Xiao, Kendra Louise Nelson

Sulfonyl amide derivatives for 
the treatment of abnormal cell 

growth

13. US20190367456A1 
[36] December 05, 2019 David G. Hangauer, Jr.

Biaryl compositions and 
methods for modulating a 

kinase cascade

14. US20190367507A1 
[37] December 05, 2019

Prabha N. Ibrahim, Wayne Spevak, 
Jiazhong Zhang, Songyuan Shi, Ben 

Powell, Yan Ma

Heterocyclic compounds and 
uses thereof

15. US20190352279A1 
[38] November 21, 2019 Sunil Kumar KC, John Hood

3-(benzoimidazol-2-yl)-indazole 
inhibitors of the Wnt signaling 
pathway and therapeutic uses 

thereof

16. US20190343814A1 
[39] November 14, 2019

Alexander Sokolsky, Oleg Vechorkin, 
Kai Liu, Jun Pan, Wenqing Yao, Qinda 

Ye

Pyrazolopyridine compounds 
and uses thereof

17. US20190336506A1 
[40] November 07, 2019

Adnan M. M. Mjalli, Bapu Gaddam, 
Dharma Rao Polisetti, Matthew J. 

Kostura, Mustafa Guzel

Tricyclic compounds as 
modulators of TNF-α synthesis 

and as PDE4 inhibitors

18. US20190135785A1 
[41] May 09, 2019 Takayuki Inukai, Jun Takeuchi, Tomoko 

Yasuhiro Quinoline derivative

19. EP2393808A1 [42] May 08, 2019
Douglas Phillipson, Katharina 
Reichenbacher, Robert J. Duguid, 
Jacqueline A. Ware

Crystalline form of r)-3-(4-
(2-(2-methyltetrazol-5-yl)

pyridin-5-yl)-3-fluorophenyl)-5-
hydroxymethyl oxazolidin-2-one 

dihydrogen phosphate

20. US20190106439A1 
[43] April 11, 2019

Eric Jon Jacobsen, James Robert Blinn, 
John Robert Springer, Susan Landis 

Hockerman

Heterocyclic itk inhibitors for 
treating inflammation and 

cancer

21. RU2682245C1 [44] March 18, 2019 John Hood, David Mark Wallace,  Sunil 
Kumar Ks

Indazolie Wnt signal pathway 
inhibitors and their therapeutic 

applications

22. US20180235948A1 
[45] August 23, 2018 Erkan Baloglu, Sharon Shacham, 

William Senapedis

(s,e)-3-(6-aminopyridin-
3-yl)-n-((5-(4-(3-fluoro-3-

methylpyrrolidine-1-carbonyl)
phenyl)-7-(4-fluorophenyl)
benzofuran-2-yl)methyl)

acrylamide for the treatment of 
cancer

23. US20180228831A1 
[46] August 16, 2018

Alyssa M. Larson, Kevin Love, Alisha K. 
Weight, Alan Crane, Robert S. Langer, 

Alexander M. Klibanov

Polysaccharide and nucleic 
acid formulations containing 

viscosity-lowering agents

https://patents.google.com/patent/EP2393808A1/en?oq=EP2393808B1
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24. US20180228782A1 
[47] August 16, 2018

Sunil Kumar KC, David Mark Wallace, 
Jianguo Cao, Chandramouli Chiruta, 

John Hood

3-(1H-pyrrolo[2,3-B]pyridin-2-
yl)-1H-pyrazolo[3,4-C]pyridines 
and therapeutic uses thereof

25. US20170260198A1 
[48]

September 14,  
2017

Marion Hitchcock, Anne Mengel, Vera 
Pütter, Gerhard Siemeister, Antje 

Margret Wengner, Hans Briem, Knut 
Eis, Volker Schulze, Amaury Ernesto 

Fernandez-Montalvan, Stefan Prechtl, 
Simon Holton, Jorg Fanghanel, Philip 
Lienau,  Cornelia Preusse, Mark Jean 

Gnoth

Substituted benzylindazoles 
for use as BUB1 kinase 

inhibitors in the treatment of 
hyperproliferative diseases

26. US20170174653A1 
[49] June 22, 2017 Brian A. Sherer, Nadia Brugger TLR7/8 antagonists and uses 

thereof

27. AU2015299173A1 
[50] February 09, 2017

Benjamin Bader, Wilhelm Bone, Hans 
Briem, Uwe Eberspacher, Knut Eis, 
Joanna Grudzinska-Goebel, Marcus 

Koppitz, Julien Lefranc, Philip Lienau, 
Ulrich Lucking, Dieter Moosmayer, 

Hans Schick, Gerhard Siemeister, Franz 
Von Nussbaum, Antje Margret Wengner, 

Lars Wortmann

2-(morpholin-4-yl)-l,7-
naphthyridines

N

NH

O N

CH3

NH N

O

NH

N
CH3

N

NH

O
N

O

Compound 1a Compound 1b

This group in between the pyridine &
morpholine rings, increase growth
inhibitory activity

Ortho-substituted compounds more easily
adapt the U-shaped conformation that
was calculated for binding of EHop-016
to Rac1.

These carbazole group
occupied the hydrophobic
pocket created by Val36 and
Ala59

Formed the peptide bond
between Val36 and
Asp38 residues

 
Fig. 2: Docked structure and SAR of carbozole derivatives

pyrrole moiety of the indole as the initiating step and 
the melatonin pathway that first introduces a hydroxyl 
group to the indole followed by subsequent biochemical 
alterations of the hydroxyl and the carboxyl functional 
groups to produce the hormone melatonin and the 
neurotransmitter serotonin. The rate limiting step of the 
KP is catalyzed by the heme-containing Indoleamine 
2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase, 
the product N-formyl kynurenine from which is rapidly 
converted to kynurenine. In mammalians, there are two 
known isoforms of IDO as IDO1 and IDO2. Among 
them, IDO2 is the least recognized and its functional 
role is yet to be fully defined. IDO1 is well defined 
and recognizes a number of indole type compounds 
like L/D-Trp and melatonin. IDO1 is up regulated 

in immune cells by the proinflammatory cytokine 
Interferon-γ (IFN-γ), which works as a mechanism to 
prevent overactive immunological responses, hence it 
prevents damages to host’s tissues and organs[57-60].

Kong et al.[61] designed and synthesized a series of 
1H indole-4,7-dione derivatives and evaluated their 
inhibitory activity in IDO1 and in IFN-γ stimulated 
Hela (cervical cancer cell line) cells. The SAR and 
enzyme kinetics experiments revealed that N alkyl 
substituted side chain of 5-(pyridin-3-yl)-1H-indole-
4,7-dione (compound 2) has most promising inhibitory 
activity (50 % inhibitory concentration value or 
half maximal inhibitory concentration (IC50) of 0.16 
±0.02 μM in enzymatic assay) against IDO1 enzyme 
(fig. 3). Moreover, it has been indicated that this 
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NH

O

O

N

NH
CH2CH3

This N-ethyl aminoethyl side chain
exhibited the most potent inhibition
activity among all.

These two O-atom form
H-bond with Ser 167

Interacting with
7-propionate of heme

N- atom form essential H-bond
interaction with Cys129.

PDB ID: 4PK5

Compound 2  
Fig. 3: Docked structure and SAR of 1H-indole-4,7-dione (2) derivative

type of IDO1 inhibitors might be a kind of reversible 
competitive inhibitors.

Yang et al.[62] synthesized and evaluated two series of 
naphthoquinone derivatives, naphthoindolizine and 
indolizinoquinoline-5,12-dione derivatives for their 
IDO1 inhibitory activity. Many of the compounds 
showed significant inhibition potency and high 
selectivity for IDO1 over tryptophan 2,3-dioxygenase 
and the SAR was also summarized. Among all, the 
compound 3a (fig. 4) showed promising and most 
potent with IC50 value 0.23 μM against IDO1 enzyme. 
However, compound 3b was also identified as promising 
lead compound with IC50 value 0.372 μM against HeLa 
cell. Furthermore, molecular docking study revealed 
that it has good interaction with protein and can be 
useful for further design of new IDO1 inhibitors as 
antitumor agents.

Human carbonic anhydrase IX/XII inhibitors:

Carbonic anhydrase (CAs) is an important target for 
cancer treatment because of its limited aspects in the 
normal tissues and predominant expression in varieties 
of cancer cells[63]. CAs is omnipresent metallo enzymes 
which catalyze the reversible hydration of carbon 
dioxide into protons and bicarbonate. Among the 
seven CA families, αCA are only enzyme subfamily 
found in human and further categorized in 15 varied 
human isoforms playing critical roles in a multitude 
of physiological functions and pathological processes 
for example respiration and transport of CO2 and 
bicarbonate between metabolizing tissues and lungs, 
homeostasis of pH and CO2, secretion of electrolytes in 
various tissues and organs, biosynthetic reactions (i.e., 
gluconeogenesis, lipogenesis and ureagenesis), bone 

resorption, calcification and tumor growth[64,65]. Human 
CA I and II are cytosolic proteins with high enzymatic 
efficiency that are constitutively expressed in all tissues. 
Conversely, human CA IX and XII are membrane related 
proteins that can be over expressed in the hypoxic cancer 
environment, with CA IX not considerably present in 
the majority of healthy tissues[64,66]. Furthermore, it 
contributes to tumor progression by stimulating tumor 
cell migration, adhesion and invasion[67]. Now a days 
CAs has been recognized as a significant biomarker of 
hypoxia and its over expression is frequently linked 
with a poor responsiveness to the classical radio and 
chemotherapies[68].

Uslu et al.[69] prepared a series of 2-arylbenzimidazole 
derivatives containing sulfonamide functionality as 
well as carboxylic acid, hydroxamic acid, carboxamide 
and boronic acid functionalities, which act as 
human CA inhibitors. The sulfonamide containing 
benzimidazole compound 4 derivatives (fig. 5) 
revealed intriguing inhibitory activity against cancer 
associated CA IX and XII with inhibitory constant (Ki) 
values in the range of 0.0052-0.0293 μM and 0.0099 
-0.0417 μM, respectively. Notably, compound 4 was 
the most potent and selective CA IX (Ki=0.0066 μM) 
and XII (Ki=0.0099 μM) inhibitor with an important 
selectivity ratio over cytosolic CA I and II isoforms in 
the range of 0.0034-0.0252 μM.

Ansari et al.[70] design, synthesis and evaluate a series 
of pyridine-thiazolidinone derivatives in order to obtain 
human CA IX inhibitors. The binding affinity of the 
compounds was measured using fluorescence binding 
studies and enzyme inhibition activity by esterase assay 
of CA IX. It was observed that compound 5a and 5b 
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This hydrophilic thiourea
group, showed the highest
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This Electron donating substituent
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activity than other groups.

��� interaction by
pyridine moiety with
amino acid F163.

Three H-bonds formed with amino acid
L234, G236, and G263 by these side chain

Compound 3b

PDB ID: 4PK5

 
Fig. 4: Docked structure and SAR of naphthoindolizine (3a) and indolizinoquinoline (3b) 5,12-dione derivatives

N

N N

H2NO2S

CH3

5
2

This pyridine 2-yl moiety
increases selectivity towards
CA IX (25.2-fold) and CA
XII 16.8, respectively

This 5-sulfonamide group exhibit highest
inhibitory activity and selectivity against
CA IX/XII.

Compound 4  
Fig. 5: Structure of 5-sulfonamide benzimidazole (4) with SAR
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OH

This nitro substituted benzene exhibited
high inhibitory activity against CAIX with
9 times selectivity and IC50 = 1.61 µM

This di-hydroxyl moiety group exhibited
excellent inhibitory activity against CA IX
with 14 times selectivity and IC50 = 1.84
µM

This moeity interact via
H-bond with His94, His96,
Thr199, Thr200

Compound 5a Compound 5b

This ring stabilized by
��� interaction with
His96

One H-bond formed
with Thr200

PDB ID: 3IAI

 
Fig. 6: Docked structure and SAR of pyridine-thiazolidinone derivatives
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(fig. 6) significantly inhibit the CA IX activity with the 
IC50 values 1.61 µM and 1.84 µM, the binding affinity 
for CA IX was significantly great with their equilibrium 
dissociation constant (KD) values 11.21 µM and  
2.32 µM, respectively. All the compounds were further 
screened in vitro for anticancer activity and found that 
compound 5a and 5b exhibit substantial antitumor 
activity against HepG-2 (human liver cancer cell line) 
and MCF-7 (Breast carcinoma cell line) cell lines.

Mutant isocitrate dehydrogenase (IDH) inhibitors:

Isocitrate dehydrogenase (IDH) enzyme family, 
includes IDH1, IDH2 and IDH3, are key metabolic 
enzymes which can convert isocitrate to α-ketoglutarate 
(α-KG)[71,72]. Recently IDH mutations have been 
recognized in somatic tumor associated numerous 
hematologic and solid tumors, such as glioma, acute 
myeloid leukemia (AML), cholangiocarcinoma cancer, 
malignant chondrosarcomas 4 and others[73-75]. IDH 
mutations frequently occur at R132 in IDH1 or R140 
and R172 in IDH2, which are situated in the catalytic 
pocket of these enzymes. Considerably, these mutations 
let IDH enzymes to gain an exceptional activity, 
which catalytically alters α-KG to an onco-metabolite 

2-hydroxyglutarate. This onco-metabolite is intensely 
connected to impaired hematopoietic differentiation 
and stimulates leukemia due to its ability of overall 
DNA hyper methylation[76]. Pharmacological barrier 
of mutant IDH1 enzyme efficiently inhibits colony 
formation of IDH mutated patient derived AML cells 
but not that of normal CD34+ (cluster of differentiation 
34 which is a glycosylated transmembrane protein) 
bone marrow cells[77]. By itself, mutant IDH has now 
become a therapeutic specified target of high interest in 
the field of anticancer drug discovery.

Liu et al.[78] synthesized and evaluated a series of 3-aryl-
4-indolylmaleimides in order to get IDH1/R132H 
inhibitors. New structure was acquired through high-
throughput screening and structure-based optimization 
and most compounds displayed great inhibitory effects 
and were highly selective against IDH1/R132H. 
Biological evaluation of the activities and function 
at cellular level revealed that compounds 6a, 6b and 
6c (fig. 7) were the most potent with IC50 values of  
0.05 μM, 0.06 μM and 0.06 μM, respectively against 
IDH1/R132H in U87MG (Glioblastoma cell line) cells 
and great selectivity against IDH1/WT (wild type) and 
IDH2/WT. Furthermore, molecular modeling study 
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provided information that can be useful for the design 
of new IDH1/R132H inhibitors as anticancer agents.

Hu et al.[79] designed, synthesized and biologically 
evaluated a series of 3-(7-azainodyl)-4-
indolylmaleimides for their IDH1/R132H inhibitory 
activities. Many compounds shown favorable inhibitory 
effects and were highly selective against the IDH1/
R132H. Evaluation of the biological activities at the 
cellular level showed that compounds 7a (IC50=0.40 
µM), 7b (IC50=0.36 µM), 7c (IC50=0.16 µM), 7d 
(IC50=0.28 µM) and 7e (IC50=0.34 µM) effectively 
reduce the production of 2-hydroxyglutaric acid in 
U87MG cells in a dose independent manner, which 
associates well with their inhibitory activity toward 
IDH1/R132H. Preliminary SAR and molecular 
modeling studies (fig. 8) provided that these findings 
may offer new insights into the development of new 
IDH1/R132H inhibitors.

Androgen receptor (AR) inhibitor:

The Androgen receptor (AR) belongs to the subfamily 
of steroid receptors, which includes the glucocorticoid 
and progesterone receptors. They all belong to the 
nuclear hormone receptor superfamily of ligand 

activated transcription factors. The AR comprises 
of a carboxyl (C-) terminal ligand binding domain 
(LBD), a central DNA binding domain (DBD) and 
the amino N terminal domain (NTD) protecting the 
major transactivation function[80-82] and it possesses an 
extremely conserved DBD, a moderately conserved 
LBD and a slight conserved NTD[83,84]. All three these 
domains are important for receptor functions. The 
biological functions of AR are initiated by binding with 
5-dihydrotestosterone/testosterone, which leads to the 
AR conformational change and its translocation from 
the cytosol to the nucleus to stimulate transcriptional 
regulation of specific genes that further modulated by 
various AR coregulators[85,86]. The AR continuously 
play a stimulator role in several different prostate cancer 
cell types during progression of prostate cancer (PCa) 
and metastasis[87]. In the beginning of the treatment, the 
insufficiency of androgens leads to cancer regression. 
However, eventually during hormone therapy, PCa 
develops into a castration resistant stage but remains AR 
dependent[88,89]. Inactivation of the AR also in castration 
resistant PCa seems to be therefore a key target of 
treatment. Current therapeutics include steroidal and 
non-steroidal anti androgens targeting typically LBD of 
AR[90-92]. Although other modulators targeting another 
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domain are speedily investigated and shows beneficial 
preclinical profiles[84,93].

Shi et al.[92] developed and synthesized a series 
of steroidal pyridines derivative through the base 
promoted three component reaction and preliminarily 
evaluated for their anti-proliferative activity against 
cancer cell lines. SARs studies displayed that the 4th 
position of the pyridine ring were chosen over the 
phenyl rings for the activity. Among these compounds, 
8 (fig. 9) possessing an extra pyridine ring at the p 
position demonstrated good growth inhibition against 
cancer cells, especially for PC-3 (prostate cancer cell 
line) cells with an IC50 value of 1.55 µM. For the AR+ 
sensitive PCa cell line LNCaP (prostate cancer cell 
line), compound 8 inhibited growth with an IC50 value of  
8.48 µM, slightly less potent than the anti-prostate 
cancer drug abiraterone (IC50=3.29 µM). Further 
mechanistic studies showed that it inhibited colony 
formation, migration and evasion of PC-3 cells in 
a concentration dependent manner as well induced 
apoptosis of PC-3 cells possibly via the mitochondria 
associated apoptotic pathways.

Aldo keto reductase (AKR) inhibitors:

The Aldo keto reductase (AKRs) is a distinct 
superfamily of proteins that catalyze the reduction of 
carbonyl groups as well steroid double bonds in the 
presence of NADPH[94]. It comprises various genes, 
among them AKR1C1-AKR1C4 genes are situated on 
chromosome 10 p15-p14 and include of 12 exons. The 
AKR1C4 and AKR1C3 are almost exclusively involve 
in the liver and PCa, AKR1C1 and AKR1C2 are most 
distinguished in the mammary glands includes breast 
cancer, endometrial cancer, colorectal cancer.

The AKR1C3 (also known as prostaglandin-F synthase) 
protein catalyzes the conversion of prostaglandins 
(PGF) H2 and D2 into Prostaglandin F2 alpha (PGF2α) 

and 9α, 11β-PGF2α respectively. It has the highest 
catalytic effectiveness than the AKR1C enzymes 
to interconvert testosterone with 14-androstene 
3,17-dione. AKR1C2, is also known as bile acid binding 
protein and preferentially reduces Dihydrotestosterone 
(DHT) to the weak metabolite 5α-androstane-3α,17β-
diol (3α-diol) without conversion of 3α-diol to DHT in 
the PC-3 cell line[95-97].

Savic et al.[98] synthesized and validated new A ring 
pyridine fused androstanes in 17a-homo-17-oxa 
(D-homo lactone), 17α-picolyl or 17(E)-picolinylidene 
series for potential antitumor activity in vitro using 
human tumor cell lines and recombinant targets of 
steroidal antitumor drugs. SAR revealed that pyridine 
fusion to position 3, 4 of the A ring intensely enhance 
affinity of 17α-picolyl compounds for cytochrome 
(CYP) 17 while conferring selective anti-proliferative 
activity against PC-3 cells. Similarly, pyridine fusion 
to the A ring of steroidal D-homo lactones led to 
recognition of new inhibitors of AKR1C3. Among 
them, compound 9 (fig. 10) found to be most promising 
with IC50 9.13 and 11.77 μM in MDA-MB-231 and 
HeLa cell respectively. Additionally molecular docking 
also suggested that compound 9 has higher binding 
affinity toward AKR1C3 (9.8 kcal/mol) similar to 
androstenedione.

Kinase inhibitor:

Kinase inhibitors have played an increasingly key role 
in the treatment of tumor and other diseases. Currently, 
more than 25 oncology medications that target kinases 
have been approved and many drugs therapeutics are 
in various stages of clinical evaluation[99]. Kinases are 
enzymes that transfer a phosphate group to a protein 
whereas phosphatases remove a phosphate group from 
protein[100]. Almost 538 known kinases are encoded in 
the human genome and these kinases uphold cellular 
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function by turning protein function on, whereas 
corresponding phosphatases reverse this action[101,102]. 
Recent advances demonstrated that molecular 
mechanisms underlying cancer cell signaling have 
elucidated a critical role for kinases in the carcinogenesis 
and metastases of various types of cancer[103]. Since 
most protein kinases promote cell survival, proliferation 
and migration, when constitutively overexpressed or 
active, they are also linked with oncogenesis[104]. Over 
the past decades, multiple human malignancies have 
been identified to be associated with modulation and 
dysfunction of protein and lipid kinases and deactivated 
phosphatases on account of chromosomal reshuffling 
and genetic mutations[105,106]. Thus, some example of 
kinase inhibitors mentioned below that have been 
recently developed or reported as potential inhibitors 
of kinase.

Nawaz et al.[107] designed, synthesized and evaluated 
pyrazoline linked carboxamide derivatives for potential 
epidermal growth factor receptor (EGFR) kinase 
inhibitors, apoptotic, cardiomyopathy toxicity and 
other antitumor activity. Among all the synthesized 
compounds, 10a and 10b shown (fig. 11) good broad 
spectrum in vitro anticancer activity arrayed with 
3-pyridine and the 4-pyridine group respectively, 
against the A549 (Lung adenocarcinoma cell line) (IC50 
10.3±1.07 and 4.6±0.57 µM) and HCT-116 (Colon 
cancer cell line) (IC50 12.9±1.76 and 6.5±0.60 µM) 
cancer cell lines by using doxorubicin as the standard 
drug. Additionally, compounds 10a and 10b were 
exhibited to induce apoptosis in A549 cancer cells as 
evidenced by 4′,6-diamidino-2-phenylindole staining 
and apoptosis assay, which further strengthened in vitro 
anticancer findings.

Yu et al.[108] designed, synthesized and biologically 

evaluated a series of imidazo[1,2-a]pyridine derivatives 
for potential phosphoinositide 3-kinase (PI3K) and 
mammalian target of rapamycin (mTOR) dual inhibitors 
as an effective targeting pathway for tumor therapy. 
Among the synthesized compounds, compound 11 was 
proved to be a potent PI3K/mTOR dual inhibitor with 
exceptional kinase selectivity, modest plasma clearance 
and acceptable oral bioavailability, with IC50 0.01, 
0.052, 0.04, 0.071, 0.0052, 15.53 μM against various 
HCT-116, HT-29 (Colon cancer cell line), MCF-7, PC-
3, LOVO (Colon cancer cell line) and HUVEC (Human 
umbilical vein endothelial cells) cell lines respectively. 
Besides, compound 11 displayed significant inhibition 
with IC50 0.20 0.58 1.20 0.50 21 nM against PI3Kα, 
PI3Kβ, PI3Kγ, PI3Kδ and mTOR respectively. The 
docking results also revealed the inhibitory activity of 
compound 11 via forming various interactive bonds 
with PI3Kα and mTOR (fig. 12).

Ullah et al.[109] synthesized and evaluated a series 
of pyridine-pyrazole-benzenethiourea and pyridine-
pyrazole-benzenesulfonamide scaffold for their 
inhibitory effect on human nucleotide Ectonucleotide 
pyrophosphatase/phosphodiesterase (ENPP) 1 and 
ENPP3 isoenzymes. Among them, compound 12a was 
the most potent inhibitor of ENPP3 (IC50=0.21 µM) and 
compound 12b was much selective to ENPP1 with IC50 
value of 0.40 µM and found promising cytotoxic against 
HeLa, MCF-7 and 1321N1 (Astrocytoma cell line) cell 
lines. However, 12b displayed preferential cytotoxicity 
against MCF-7 (IC50=16.05 µM), which is similar to 
the potency of cisplatin. Additionally, docking results 
showed considerable binding interactions with active 
sites of ENPP isoenzymes (fig. 13).

B-cell lymphoma 2 (Bcl-2) inhibitors:
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Apoptosis is a form of planned cell death that is 
activated in response to developmental cues or cellular 
stress. This selective cell suicide shows a crucial role 
in various physiological and pathological processes 
including growth, immunity and disease by the 
elimination of damaged or unnecessary cells helps to 
ensure organs health[110]. B-cell lymphoma 2 (Bcl-2) 
is a family of proteins responsible as key regulators 
of cell death that can either suppress (pro survival) 
or promote (pro apoptotic) apoptosis[111,112]. The pro 
survival subfamily includes Bcl-2, B-cell lymphoma 
extra-large (Bcl-XL), Bcl-w (anti-apoptotic protein), 
anti-apoptotic member of the Bcl-2 (A1) and myeloid 
cell leukemia-1 (MCL-1) whereas the pro apoptotic 
subfamily is classified into the multi domain group 
(BCL2-associated X Protein (Bax), BCL-2-antagonist/

killer (Bak) and BCL-2 related ovarian killer (Bok)) 
and the BCL-2 Homology 3 (BH3) only group[113].

Favorable results are being reported with the usage 
of inhibitors of BCL-2 and other related molecules, 
especially with BH3 mimetics[114,115]. Various studies 
suggested that apoptosis blockage is a crucial oncogenic 
mechanism in lymphoid malignancies and that BCL-2 
overexpression is a common finding in leukemia and 
lymphomas, numerous antagonists of anti-apoptotic 
BCL-2 have been investigated and developed for the 
treatment of hematological neoplasms[116,117].

Santosh et al.[118] synthesized, characterized and 
evaluated a series of oxadiazole and hydroxypyrazoline 
derivatives for promising anticancer inhibitors in which 
compounds 13a and 13b  (fig. 14) exhibited remarkable 
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growth inhibition of MDA-MB-231 (IC50: 10.2 
±0.02 and 29.50±1.26 µM) and HT-29 (IC50: 25.91±1.12 
and 20.32±1.23 µM) cell lines and flow cytometric 
analysis also revealed that 13a arrests both cells lines 
at G0/G1 phase while 13b induced G0/G1 arrest only 
in the HT-29 cells. Furthermore, molecular interaction 
studies also revealed that 13a and 13b exhibited its 
capacity of being a plausible Bcl-2 and CDK2 (cell 
division protein kinase 2) inhibitor respectively. 

Sabour et al.[119] designed, synthesized and evaluated 
a new series of 3-cyanopyridine derivatives for their 
targeting survivin and Bcl-2/Bax. Among them, the 
compound 14 showed most active cytotoxic and 17.92 
times more potent than 5-fluoro uracil drug. Cell cycle 
analysis of the most potent 14 (fig. 15) revealed that 
cell cycle arrest at the G2/M phase with an increase in 
pre G1 apoptotic cells and was subjected to apoptosis 
studies to estimate their apoptotic potency in which it 

decreases the expression of the apoptosis suppressor 
Bcl-2 and increases in the level of apoptosis inducer 
Bax. The in vitro cytotoxicity of the synthesized 
compound 14 was evaluated against a panel of cell 
lines: PC-3, HepG-2 and MDA-MB-231 with IC50 value 
0.42±0.05, 1.22±0.06 and 0.66±0.03 µM respectively 
and in normal cell: WI-38 (Normal human fetal lung 
fibroblast cell line) with IC50 value 193.15±0.09 µM. 

Topoisomerase (Topo) inhibitors:

Human DNA topoisomerase (Topo) is a nuclear enzyme 
and key component of the cell which can explain all 
topological issues associated with several vital cellular 
processes like DNA replication, transcription, repair, 
recombination, chromatin assembly and chromosome 
segregation[120,121]. It comprises of two subtypes Topo I 
and Topo II, since the discovery of Topo by J. C. Wang 
in 1971, have been vitally prominent molecular targets 
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for the development of antitumor drugs[122,123]. Human 
Topo I make DNA single strand cleavage at a time 
while Topo II which is in the presence of Magnesium 
(Mg) (II) and adenosine triphosphate (ATP) hydrolysis, 
cleaves both strands of the DNA double helix to 
complete their catalytic functions[124,125]. Furthermore, 
Topo II has two isoforms: Topo IIα and Topo IIβ, both 
plays an essential role in chromosome segregation and 
proper organization[126] and these isoforms have been 
considered as more imperative molecular target than 
Topo I for designing of antitumor agents[127].

Lee et al.[128] designed, synthesized and biological 
evaluated a series of thiochromeno[2,3-c]quinolin-12-
one derivatives for their Topo inhibition. Among them, 
compound 15 showed full inhibitory activities against 
Topo I and Topo IIα with IC50 values of 1.14±0.04, 
0.22±0.04, 0.80±0.21, 0.53±0.31 and 0.53±0.08 μM in 
MDA-MB-231, MDA-MB-468 (Breast carcinoma cell 
line), MCF-7, HCT-116 and H1299 (Lung carcinoma 
cell line) cells respectively. Additionally recognized 
compound 15  as a most potent dual Topo inhibitor 
with low toxicity to normal cells and SAR study  
fig. 16) also revealed that the terminal amino group of 
N-2-aminoethylamino or N-3-aminopropylamino at 
the 6th position and 8,10-di-halogen substituents on 

thiochromeno[2,3-c]quinolin-12-one are crucial for the 
Topo inhibitions and tumor-killing activities.

Jin et al.[129] designed, synthesized and evaluated a series 
of new quinoline and quinolinium iodide derivatives to 
discover potential antitumor and antibacterial agents. 
The compound 16 was found to be the most potent 
derivative with IC50 values of 4.45±0.88, 4.74±0.42, 
14.54±1.96 and 32.12±3.66 μM against A549, Hela, 
SGC-7901 (Gastric cancer cell line) and L-02 (Liver 
cancer cell line) cells respectively, stronger than the 
positive control by 5-fluoro uracil and Methotrexate. 
Furthermore, compound 16 also had the most 
potent bacterial inhibitory activity. Additionally, the 
docking result suggested there were numerous crucial 
interactions between the 4-position of compound 16 
and human Topo I, among which two main H-bonds 
were formed between the amino (NH) groups or aryl-
O-aryl interacts with the catalytic amino acid residue 
of Dystroglycan (DG) 112 and Lysine (Lys) 425, 
respectively (fig. 17).

Tubulin polymerization inhibitors:

Microtubules are involved in numerous vital cellular 
functions in various eukaryotic cells such as cell growth, 
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motility, division, intracellular trafficking and the ability 
to adapt several shapes to interact with the surrounding 
environment[130,131]. Microtubule targeting agents are 
a major class of tumor chemotherapeutic drugs[132,133]. 
Those agents bind to heterodimers of α and β tubulin 
which are the building blocks of cellular microtubules. 
There is a growing evidence displaying that interfering 
with microtubules normal dynamic equilibrium can 
engage the spindle roadblock and the arrest of cell cycle 
progression leading to cell death[134-136].

Jian et al.[137] were synthesized and biologically evaluated 
a new pyrazolo[3,4-b]pyridine bridged analogues of 
combretastatin A-4 possessing 3,4,5-trimethoxylphenyl 

groups for their anti-proliferative and tubulin 
polymerization inhibitory activities. Among all these 
analogs, the most active analogue 17 was found to 
induce MCF-7, MDA-MB-231, HeLa and Kyse150 
(Esophageal squamous cancer cell line) cells with  
in vitro cytotoxicity (IC50±standard deviation (SD)) as 
27.22±2.31, 27.04±6.42, 18.08±1.48 and 62.82±2.52 
μM, respectively. Moreover, molecular modeling 
studies showed that derivative 17 most possibly 
occupies the colchicine site of tubulin (fig. 18). 

Mirzaei et al.[138] synthesized and evaluated a series of 
quinoline-chalcone hybrids to discover a promising 
tubulin inhibitors and anticancer activity. Among all 
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quinolones, compound 18 revealed as the most potent 
anti-proliferative activity with IC50 values 2.32±0.84, 
2.615±0.63, 4.96±1.46, 2.32±0.46 and 4.44±1.28 against 
A2780 (Ovarian carcinoma cell line), A2780/RCIS 
(Ovarian carcinoma cell line), MCF-7, MCF-7/MX 
(Breast carcinoma) and HUVEC cells respectively. It is 
also recognized as tubulin inhibitors and induced more 
arrest at G2/M phase in four cancer cell lines compared 
to other synthesized compounds. Furthermore, SAR 
study, molecular dynamics simulation and molecular 
docking studies of compound 18 into the colchicine 
binding site of tubulin showed the possible interaction 
with the active site of tubulin (fig. 19).

Cytochromes P450 (CYPs) inhibition:

Cytochromes P450 (CYPs) is a superfamily 
of hemo proteins involved in many oxidation 
and reduction reactions on both endogenic and 
xenobiotic compounds[139]. In general the CYP 
isoenzyme superfamily consists of 57 CYP genes 
and 58 pseudogenes arranged into 18 families and 
43 subfamilies[140]. For instance, the CYP1 family 
is included of 3 members: CYP1A1 (cytochrome 
P450 Family 1 Subfamily A Member 1), CYP1A2 
(cytochrome P450 Family 1 Subfamily A Member 2) 
and CYP1B1 (cytochrome P450 Family 1 Subfamily 
B Member 1). The latter is primarily expressed in 
extra hepatic mesodermal cells including steroidogenic 
tissues such as ovaries, testes and adrenal glands and 
in steroid responsive tissues such as breast, uterus and 
prostate[141]. In human eighteen (18) CYP gene families, 
including over 50 enzymes are found[139]. Despite the 
importance of other CYP isoforms like CYP3A4 and 
CYP2D6 are responsible in the metabolism of 50 % of 
clinical drugs[142].

Wang et al.[143] reported a class of 3-substituted 

1H-pyrrolo[2,3-b]pyridine derivatives and evaluated 
for their in vitro anticancer activities. Among the 
derivatives, the optimized compound 19 displayed 
potent enzyme inhibition and exceptional anti-
proliferative effect with IC50 values from 0.109 μM 
to 0.245 μM on A549, MDA-MB-231 and MCF-7 
cell lines. Further analysis indicated that compound  
19 potently suppressed the migration of A549 cells and 
showed moderate inhibitory activity against various 
subtypes of human cytochrome P450 with percentage 
inhibition at 10 μM of various isozyme CYP1A2, 
CYP2C9, CYP2D6, CYP2C19 and CYP3A4 as 26.7, 
4.9, 5.8, 37.8 and 1.3 μM, respectively (fig. 20).

Mohamed et al.[144] synthesized and evaluated a new 
class of hetero steroids derivatives for their anticancer 
activities. It was observed that compounds 20a (IC50: 
38.99, 28.88 and 21.98 μM) and 20b (IC50: 41.19, 
31.99 and 23.91 μM) showed the highest cytotoxic 
effects against all tested HepG-2, Huh-7 (Liver cancer 
cell line) and A549 cell lines. Furthermore, molecular 
simulation also revealed the activity of the tested 
compounds against four different proteins (CDK2, 
CYP19 (aromatase), janus Kinase 2 and Bcl2) which are 
vastly implicated in tumor regulation and progression. 
Compound 20a and 20b found that were indicated by 
lowest binding energy (compound 20a=−11.3, −9.2, 
−11.3 and −9.8 kcal/mol and compound 20b=−10.5, 
−11.8, −12.0 and −9.7 kcal/mol) compared to reference 
ligand (fig. 21).

Miscellaneous:

Vadukoot et al.[145] reported the synthesis, SAR and 
biological evaluation of a series of 1H-pyrrolo[2,3-b]
pyridine-2-carboxamide derivatives as selective and 
potent phosphodiesterase type 4B (PDE4B) inhibitors. 
Among all, compound 21 is a PDE4B preferring 
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Fig. 19: Docked structure and SAR of quinoline-chalcone derivative
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inhibitor with IC50 value 0.14 and 0.88 μM for PDE4B 
and PDE4D respectively and displayed acceptable  
in vitro absorption, distribution, metabolism and 
excretion (ADME) and significantly also inhibited 
tumour necrosis factor alpha (TNF-α) release from 
macrophages showed to pro inflammatory stimuli. 
In a radio ligand binding assay of PDE isoforms for 
percentage inhibition at 10 μM, compound 21 was 
selective against all tested isoforms with <50 % 
inhibition, except PDE3B with about 87 % inhibiton 
(fig. 22).

Lin et al.[146] designed, synthesized and evaluated a 
new C-X-C chemokine receptor type 4 (CXCR4) 
antagonists based on an aminoquinoline template. A 
different potent CXCR4 antagonists were recognized, 
exemplified by compound 22, which revealed excellent 
binding affinity with CXCR4 receptor (IC50=57 nM) 
and inhibited C-X-C motif chemokine 12 (CXCL12) 
induced cytosolic calcium released (IC50=0.24 nM). 
Moreover, compound 22 potently inhibited CXLC12/
CXCR4 mediated cell migration in a transwell invasion 
assay. SAR study also revealed it as potent inhibitor, as 

mentioned in fig. 23.

Xi et al.[147] designed, synthesized and evaluated a 
series of new 3-(thiophen-2-ylthio)pyridine derivatives 
to discover promising multi target antitumor agents. 
Distinctively compound 23 (fig. 24) with IC50 values 
for HepG-2 is 2.98±1.11 μM and WSU-DLCL2 (B-cell 
lymphoma cell line): 4.34±0.84 μM, demonstrated good 
inhibitory activities against Fibroblast growth factor 
receptor 2 (FGFR2), FGFR3, EGFR, Janus kinase and 
receptor originated from Nantes (RON). Additionally, 
the cell cycle analysis showed that compound 23 could 
arrest HepG-2 cells in the G1/G0 phase.

Gao et al.[148] designed, synthesized and evaluated 
a series of 6-substituted pyrrolo[2,3-d]pyrimidine 
derivatives as non-classical antifolate (dihydrofolate 
reductase (DHFR)) and potential anticancer inhibitors. 
In preliminary anti-proliferation assay of all compounds 
revealed submicromolar to nanomolar inhibitory effects 
against KB (keratin forming tumor cell line) tumor 
cells, whereas compounds 24a-24c also exhibited 
nanomolar anti proliferative activities towards SW620 
(Colon cancer cell line) and A549 cells. In particular, 
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compounds 24a-24c were considerably more potent 
with IC50 value for compound 24a: 0.66, 0.43 and 0.22, 
compound 24b: 0.78, 0.76 and 0.81 and compound 
24c: 0.47, 1.52 and 0.56, against KB, SW620 and A549 
cells line, respectively. The growth inhibition induced 
cell cycle arrest at G1 phase with S phase suppression. 
Moreover, molecular modeling studies also suggested 
two binding modes of the target compounds with 
DHFR (fig. 25).

Mizojiri et al.[149] designed, synthesized and 
biologically evaluated a series 1H-Pyrrolo[3,2-b]
pyridine-3-carboxamide derivatives for their Acetyl-
coenzyme-A carboxylase1 (ACC1) inhibitory activity. 
Initially identified 1-methyl-1H-pyrrolo[3,2-b]
pyridine-3-carboxamide derivative as a potent ACC1 
inhibitor, because of it having pharmacokinetic and 
physicochemical issues, this led to discovery of 
1-isopropyl-1H-pyrrolo[3,2-b]pyridine-3-carboxamide 
derivative compound 25 as a promising ACC1 inhibitor, 
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Fig. 22: Docked structure and SAR of 1H-pyrrolo[2,3-b]pyridine-2-carboxamide derivative
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which showed potent ACC1 inhibition as well as 
sufficient cellular potency with IC50 value of 150 nM 
against HCT-116 cells. SAR study also revealed it as 
potent and promising ACC1 inhibitor, as mentioned in 
fig. 26. 

CONCLUSION

This review study brought out pyridine as an 
advantageous and privileged moiety in the field 
of pharmaceutical sciences with its broad range of 

anticancer profile including numerous targets to throw 
enormous scientific knowledge for development and 
designing of newer pyridine derivatives or analogs. 
The thoroughgoing declaration of SAR/molecular 
docking will surely help the scientific society to 
produce effective and potent drugs with excellent 
pharmacological activity.
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