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ReviewReview  ArticleArticle

Recent Trends in Drug-Likeness Prediction: A 
Comprehensive Review of In Silico Methods
R. U. KADAM AND N. ROY*
Centre of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S.
Nagar, Punjab - 160 062, India

The low success rate of converting lead compounds into drugs owing to unfavorable pharmacokinetic parameters has 
evoked a renewed interest in understanding more clearly what makes a compound drug-like. This article reviews a 
number of computational techniques for identifying drug-like molecules, ranging from simple counting schemes to 
sophisticated machine learning techniques such as neural networks, along with their application and challenges.

Key words: Drug-like, non-drug likes, comprehensive medicinal chemistry (CMC), available chemical databases 
(ACD) and modern drug data report (MDDR)

The phrase �drug�like� is becoming more widespread. 
According to Walters and Murcko, drug-like 
compounds are molecule which contain functional 
groups and/or have physical properties consistent 
with the majority of known drugs, and hence can 
be inferred as compounds which might be active 
biologically or might show therapeutic potential1,2. 
Lipinski deÞ nes those compounds as �drug-like�, which 
have sufficiently acceptable ADME/T properties to 
survive through the Phase I clinical trials3. However, 
drugs as well as drug-like compounds are distributed 
extremely meagerly through chemical space, which 
is estimated to contain 1040 to 10100 molecules. For 
a drug, properties like synthetic ease, stability, oral 
availability, good pharmacokinetic properties, lack of 
toxicity and minimum addictive potential are of utmost 
importance. Many of these properties depend on the 
inherent biological and physicochemical parameters 
of the molecule; however the complex structure of 
the whole drug molecule makes correlating attempts 
difficult. One interesting approach is to study the 
parameters of the fragments of whole drug molecule. 
The present review explores what makes a molecule 
drug like, the methods for prediction of drug likeness, 
along with notes on currently available drug like and 
non drug like databases.

In order to understand the concept of �drug-likeness�, 
it is necessary to understand the common features 

present in a drug molecule. Bemis and Murcko 
have performed a general analysis of the shapes of 
molecules with the help of a simple graph approach 
that considers only two-dimensional structures4,5. 
According to this approach any molecule can be 
dissected into four units: ring, linker, side chain and 
Þ nally framework (Þ g. 1). Ring system is the cyclic 
part within the graph representation of molecule 
and sharing an edge (a connection between two 
atoms or a bond). E.g. omeprazole has pyridine and 
benzimidazoline ring systems. Linker atoms form 
the direct path connecting the two rings.  Side chain 
atoms are any non-ring, non-linker atoms such as 
the four side chains in omeprazole; two single-atom 
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Fig. 1: Hierarchical description of molecules. 
Omeprazole and its decomposition into framework, ring system, 
side chains and linker.
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side chains and two, two-atom side chains. Finally 
framework is deÞ ned as the union of ring systems and 
linkers in a wire-frame. 

In order to determine what makes a molecule drug-
like one must begin by examining the molecules in 
hand with sets of known drugs and with sets of non-
drug (or molecules assumed to be non-drug). Methods 
to identify drug-like molecules are based on their 
ability to distinguish known drugs from non-drugs in 
the set of compounds by comparing with one or more 
of the following widely available drug databases.

The comprehensive medicinal chemistry (CMC) 
database: 
CMC is derived from the drug compendium in 
Pergamon�s Comprehensive Medicinal Chemistry. The 
database contains more than 7000 compounds, used or 
tested as medicinal agents in humans. 

The modern drug data report (MDDR): 
MDDR contain more than 100 000 drugs launched or 
under development. These compounds are referenced 
in the patent literature, conference proceeding and 
other sources. 

The world drug index (WDI): 
The WDI 1997 contains 51 596 compounds, of these, 
7570 have been assigned a United State Adapted 
Name (USAN) and 6307 have been assigned an 
International Nonproprietary Name (INN) combining 
these gives 8323 unique compounds, of which 3515 
have an entry in the indication and usage (IU) Þ eld. 

Available chemical databases (ACD): 
The ACD is a collection of more than 300 000 
commercially available compounds. The set of 
non-drugs is typically created by selecting random 
compounds from the available chemical databases4. 

Drug-likeness is mostly a statistics of descriptors 
derived from databases of other compounds. It can 
therefore, be used to evaluate the drug-likeness 
of other compounds and selection from screening 
libraries such as combinatorial libraries or virtual 
libraries rather than that of a single compound. For 
a broader view on the subject of drug-likeness and 
its use in library design the reader is suggested to go 
through recent review articles6-11. 

METHODS OF DRUG-LIKENESS 
PREDICTION 

Simple counting methods:
Simple counting method involved correlation of 
molecular descriptors or properties implicit to drug 
likeness. Properties such as oral bioavailability or 
membrane permeability have often been correlated 
to log P, molecular weight (MW) and number of 
hydrogen bond acceptors and donors in a molecule. 
Simple counting methods include �Lipinski�s rule of 
5� and its implementation in prediction of the drug 
likeness, along with extended concept of Ghose and 
Opera.

The �rule of 5� (RO5) provides a heuristic guide for 
determining, if a compound will be orally bioavailable. 
The rules were derived from the analysis of 2245 
compounds with a USAN or INN and the entries in 
the indication and usage field of the database were 
included in the analysis. The assumption was that 
compounds meeting these criteria had entered human 
clinical trials and therefore must have possessed 
many of the desirable characteristics of drugs12. The 
RO5 states that molecules showing poor absorption 
or permeation are more likely to have- more than 5 
H-bond donors, MWT over 500, log P over 5 and, 
more than 10 H�bond acceptors. However there 
are plenty of examples available for RO5 violation 
amongst the existing drugs. Majority of violations come 
from antibiotics, antifungals, vitamins, and cardiac 
glycosides. Still these classes of compound are orally 
bioavailable because they possess groups which act as 
substrates for transporters. If a compound fails the RO5 
there is a high probability that oral activity problems 
will be encountered. However, passing the RO5 is no 
guarantee that a compound is drug-like. Moreover, 
the �RO5� says nothing about specific chemistry or 
structural features found in drugs or non-drugs. Ghose 
et al., extended this work by characterizing 6304 
compounds (taken from the CMC Database) based on 
computed physicochemical properties. They established 
qualifying ranges which cover more than 80% of the 
compounds in the set. Ranges were established for A 
log P (20.4 to 5.6)13,14, molar refractivity (40 to 130), 
molecular weight (160 to 480), and number of atoms 
(20 to 70). A similar study was performed by Oprea15, 
who carried out a Pareto analysis of compounds 
from MDDR, CMC, Current Patents Fast-alert, New 
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Chemical Entities and ACD. The Pareto analysis was 
used to determine property ranges covering 80% of 
the compounds in a particular database. In addition to 
the properties discussed above, Oprea also considered 
counts of ring bonds, rigid bonds and rotatable bonds. 
Rotatable bond count has been widely used filter 
following the observation that greater than 10 rotatable 
bonds correlates with decreased oral bioavailability in 
rat. An analysis of small drug-like molecules suggests 
a Þ lter of log D, where the values in the range of 0 to 
3 shown to enhance the probability of good intestinal 
permeability. 

Knowledge–based methods:
Knowledge-based methods are based upon the concept 
of intrinsic binding energies and scoring of structural 
fragments. In this method mainly functional groups 
are used to classify drug and non-drug like molecules 
based on different scoring functional group fragment. 
Andrews et al., used a set of 200 drug molecules 
to derive a set of intrinsic binding energies for 
the 10 functional groups as shown in Table 116-17. 
The inherent binding of small molecules was then 
estimated by summing the intrinsic binding energies 
and subtracting an entropic factor; the method had 
been widely used previously for the reagent selection 
rather than drug likeness prediction. On similar lines, 
Muegge et al., in 2001 assigned a score to each 
molecule based on the presence of structural fragments 
typically found in drugs. The fragments used in this 
study were amines*, amides, alcohols, ketones, 
sulfones, sulfonamides, carboxylic acids*, carbamates, 
guanidine*, amidines*, urea, and esters. A molecule 
was given one point for each non-overlapping 
fragment. The molecules with a score between 2 
and 7 were classiÞ ed as drugs otherwise they were 
classified as non-drugs. Compounds containing a 
single pharmacophoric group would only be classiÞ ed 
as drugs if they contained one of the groups marked 
with an asterisk in list of fragments18. 

Functional group fi lters:
A different approach is to identify functional groups 
that tend to be undesirable because of chemical 
reactivity and metabolic ability. Walter et al., brieß y 
described an approach REOS (Rapid Elimination 
of Swill) to eliminate undesirable reagent in 
combinatorial libraries1. REOS is a hybrid method that 
combines some simple counting schemes similar to 
those in the RO5 with a set of functional groups Þ lter 
to remove the reactive and otherwise under sizable 
moieties. The functional group filters implemented 
in REOS identify reactive, toxic, and otherwise 
undesirable moieties. Initial filtering is based on a 
set of seven property Þ lters. Hydrogen bond donors, 
acceptors and charged groups are determined using 
a set of rules similar to those used in the PATTY 
program developed at Merck. Log P can be calculated 
based on a variety of schemes. A web-based interface 
makes it trivial to modify parameters to suit the needs 
of a particular drug discovery project. Examples of 
the functional group Þ lters employed by REOS are 
listed in Table 2. In REOS, the functional groups 
filters are specified using the SMARTS19 pattern 
matching language developed at Daylight Chemical 
Information Systems. SMARTS is extended version of 
the SMILES (SimpliÞ ed Molecular Input Line Entry 
System)20,21 notation developed speciÞ cally for sub-
structure searching. Steps involved in REOS analysis 
are as follows: In the Þ rst step reagents are Þ ltered; 
reactive and toxic reagents are removed in addition 
to the reagents that clearly will create a product that 
violates the molecular weight limits. In the next step, 
reagents checked for compatibility with chemistry- for 
example, when synthesizing amide one can simplify 
the chemistry by removing acids containing basic 
amines and amines containing acidic functionality. 
Finally the product is filtered considering the 
properties such as log P. This step is also incorporates 
a maximum count cutoff for the functional groups. 
The major advantage of SMARTS patterns is that they 
are simple ASCII text, which can be easily modiÞ ed 
and used by a variety of applications. However, 
writing such patterns takes a bit of practice and 
the notation may not be immediately accessible to 
medicinal chemists. 

TABLE 1: FUNCTIONAL GROUPS USED IN THE 
SCORING SCHEME DEVELOPED BY ANDREWS                                             
Functional groups Score
Carboxylate 8.2
Phosphate 10
N+ 11.5
N 1.2
OH 2.5
O or S ether 1.1
Halogens 1.3
CO 3.4
C(Sp2) 0.7
C(Sp3) 0.8

TABLE 2: FUNCTIONAL GROUP FILTER EMPLOYED BY 
REOS PROGRAM
Functional groups SMARTS notation
Sulfonyl halide S(=O)(=O)[F, Cl, Br, I]
Acid halide C(=O)[Cl, Br, I]
Peroxide OO
Aldehyde [HC]=O



Indian Journal of Pharmaceutical Sciences612 September - October 2007

www.ijpsonline.com

Multi–property optimization:  
When designing a combinatorial library, drug�
like character refers to only as a small number 
of properties, which must be optimized; it may 
also be necessary to optimize diversity, potency, 
selectivity or a number of other properties. 
Simultaneous optimization of multiple properties of 
as combinatorial library involves selection of random 
subset of reagents, construction of a virtual library 
of compounds from these reagents, calculation of 
the properties of combinatorial products, making  
modiÞ cations to the reagent subset and accepting the 
changes if they improve the  like character of the 
library. This process is repeated until a predetermined 
stopping condition has been reached. 

Gillet et al.,22 used a genetic algorithm to optimize 
both diversity and drug�like character of a 
combinatorial library. Libraries were scored by 
calculating frequency distribution for each of the 
five properties (log P, MWT, HBD and HBA) and 
comparing this distribution with that calculated from 
the CMC. The library whose frequency distribution 
most closely matched that of the CMC received 
the highest score. Zheng et al., used simulated 
annealing to optimize a set of four characteristics of 
a combinatorial library i.e. diversity, developing ease, 
focusing and practicality23,24.

Chemistry space methods:
The basic assumption of these methods is that 
drugs will tend to possess distinct values for certain 
properties and as a result will be shown to be distinct 
from non-drugs when analyzed in multi-dimensional 
space25. A chemistry space is typically defined by 
calculating a number of descriptors for each molecule 
and using the descriptor values as points in a multi- 
dimensional space. For example, let us assume that 
we have calculated molecular weight, log P and 
number of H�bond donors for a set of molecules. 
These three descriptor values can then be used to 
define a point in a three dimensional spaces which 
represents each molecule. Molecules are then assigned 
a drug �likeness index between 0 and 100% through 
a comparison of the descriptor vector for a given 
molecule with the cluster center.

Examination of building blocks in known drugs:
This approach does not directly distinguish drugs 
from non�drugs but it helps chemists to identify 
preferred moieties for library design. Bemis and 

Murcko4,5 developed a method for organizing drugs 
by decomposing molecules into framework (Þ g. 2). A 
successful examination of 5120 compounds from the 
CMC yielded 1170 scaffolds. This suggests that drugs 
are rather diverse. However, when atom and bonds 
were considered equivalent, only 32 frameworks 
described the shapes of half of the drugs in the set. 
These frameworks are shown in (fig. 3). Then the 
frequency of occurrence of a particular framework in 
the entire database is compared to its frequency in a 
speciÞ c toxicity subset, this allows the discrimination 
between composition frameworks which occurs 
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Fig. 2: Reducing a drug to molecule to a framework.
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Fig. 3: Most frequently occurring frameworks in drugs. 
The number indicates percentage of occurrence in the comprehensive 
medicinal chemistry (CMC) database.
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in a variety of molecules and toxicity conferring 
framework which occur primarily in molecules with 
a speciÞ c toxicity. An automated technique that uses 
a highly connected network to model the toxicity-
conferring frameworks can then be used to screen 
a database and identify potentially toxic molecules. 
Toxicity is a major cause of failure for the drugs 
in clinical trials and this will undoubtedly continue 
to be an area of active research. A similar approach 
to assess the occurrence of structural motifs in 
drug molecules has been presented by Wang and 
Ramnarayan who have developed the concept of 
multilevel chemical compatibility (MLCC) between 
drug databases and a test molecule as a measure for 
drug-likeness. In MLCC, local atom environments 
are defined using up to tetra centered groups. The 
occurrence of these topological features is then tested 
for 11 704 compounds from the CMC and MDDR. 
A compound is recognized as drug-like if all of its 
topological motifs occur in the other known drugs.

OTHER METHODS

The majority of the methods discussed above were 
developed by translating the collected knowledge of 
scientists involved in drug discovery into a computer 
programs. An alternate approach is to design a 
computer program for a set of drugs and non-drugs 
and allow the program to learn to distinguish these 
set of drugs and non-drugs.

Machine learning programs:
Machine-learning approaches have been applied most 
successfully today to distinguish between drugs and 
non-drugs. Assuming that compounds structurally 
similar to known drug molecules are potential drug 
candidates themselves. Databases of drugs such as 
the CMC or MDDR and reagent-like databases such 
as the ACD can be statistically analyzed to identify 
criteria that distinguish drugs from non-drugs. Drug-
classification models that are based on this idea 
include neural network approaches as well as recursive 
partitioning approaches.

Recursive partitioning approach:
The machine-learning program (i.e. recursive 
partitioning approach) was used with a set of seven, 
one-dimensional descriptors to produce a decision tree 
which was able to correctly classify ~80% of CMC 
compounds and ~70% of ACD compounds. The rules 

for such trees can be identified by walking up the 
tree from bottom to top. An example of such a set 
of rules for a decision tree can be that if parameter 
like molecular weight (MW >388.7), kappa index 
(Kap <= 10.924), number of donor atoms (Don >1) 
and number of acceptor atoms (Acc >3) or number 
of acceptor atoms (Acc <=8) and number of donor 
atoms (Don <=3), then Class is called as Drug (Þ g. 
4). The primary disadvantage of this method is its 
tendency to over train and produce rules based on 
chance correlation in the data.

Neural network approach:
Neural network simulates the biological nervous 
system to create an output classiÞ cation based on a set 
of input values. Simple neural networks use Ghose and 
Crippen atom types as topological descriptors. Ninety 
one statistically significant atom types correspond 
to 91 input neurons of the neural net. Typically, the 
hidden layer consists of Þ ve neurons which are used 
in the net design. The result from single neuron output 
layer can vary between 0.1 (non-drugs) or 0.9 (drugs). 
Trained on 5,000 drugs taken from the WDI and 5,000 
compounds labeled as non-drugs taken from the ACD, 
the resulting neural net has been shown to correctly 
classify ~80% of other drugs/non-drugs. However the 
possible drawbacks of neural nets are that, discernible 
rules as to why a given compound is classiÞ ed as drug 
or non-drug cannot be derived, also the neural net will 
strongly reß ect its database heritage.

Acc <= 3
DRUG

MW <=426.8
DRUG

MW > 426.8
NON-DRUG

Acc > 8
NON-DRUG

Kap > 10.9
DRUG

Don < 3

Acc > 3

Acc <=8

Don <= 1 Don > 1

Kap
<=10.9
DRUG

MW <= 388.7
DRUG

MW > 388.7
NON-DRUG

Fig. 4: A portion of a decision tree used to distinguish drugs from 
non-drugs.
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APPLICATIONS

Compounds and screening set selection:
One important application of these techniques is in the 
context of compounds and screening set selection. For 
example, techniques such as those already described 
can be used to filter a set of compounds from an 
external supplier prior to purchase. The genetic 
algorithm-based method applied to the selection of 
compounds from the corporate database for generation 
of a screening set. ProÞ ling using the RO5 and PSA 
criteria can also provide a valuable indicator of the 
likely absorption characteristics of a combinatorial 
library or screening set.

Combinatorial library design:
In addition to simply proÞ ling libraries, this approach 
has been taken one step further and has been applied 
to the design of combinatorial libraries. In one 
example, a chemist had selected reagents for a 
combinatorial library (LIB1) in an oral drug discovery 
program to optimize parameters such as MW and 
ClogP in an approximate manner. A follow-up library 
(LIB2) was designed to optimize PSA and RO5 
criteria much more rigorously with reagent selection 
being performed by a Monte Carlo search procedure. 
Both libraries were subsequently tested in a Caco-2 
monolayer absorption system and both of the designed 
libraries shown much improved absorption. These 
results showed the added value of quantities such 
as PSA in compound (library) design in addition to 
more traditional computed descriptors such as ClogP 
and MW.

Virtual screening of chemical databases:
Drug likeness is used as one of the filters in the 
virtual screening of chemical databases with the 
purpose to screen in those molecules which have the 
property similar to that of known drugs. The rule 
of five is used as primary filter for screening the 
chemical databases, which are modiÞ ed in accordance 
with the potent molecule, to performed efficient 
searching procedure to yield only those molecules 
having drug like character. 

CONCLUSION

It is clear that there are many research groups 
currently engaged in identifying drug-like and 
non-drug-like molecules. A common theme is to 
learn from history i.e. to examine databases of 

known compound with biological activity and draw 
conclusions from the data for the properties, such as 
toxicity and oral bioavailability etc. However neither 
are available databases extensive; nor have the data 
been experimentally determined in a consistent 
manner. Thus there is a need for the generation 
of larger data sets of diverse compounds for such 
properties in area of the toxicity prediction. Future 
advances in the Þ eld shall involve the combination 
of general drug-likeness with specific properties of 
small molecules to hit speciÞ c gene families (such as 
GPCRs or kinases). 
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