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Beevisha et al.: Regulation of Adipogenesis by PU.1 Antisense Long-Non-Coding Ribonucleic Acid

Earlier, long non-coding ribonucleic acid molecules were considered as a part of transcriptional noise and 
ignored imprudently, but gradually got revealed as potential regulators in many biological processes and 
their roles in gene expression influencing almost every aspect associated with genes, including epigenetic, 
transcriptional, and post-transcriptional regulation. Apart from their involvement in normal physiology, 
long-non-coding ribonucleic acid expression functions are also related to adipose biology, indirectly leading 
to obesity. This review discusses the beneficial role and mechanisms of action of PU.1 antisense long-non-
coding ribonucleic acids in normal adipogenesis and their implications for obesity. Extensive research and 
identification of prominent long-non-coding ribonucleic acids in adipose biology will not only grant insights 
into diseases associated with obesity but also give ensure therapeutic targets for it.
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In both developed and developing countries, obesity 
is becoming increasingly common. By 2030 the 
proportion of overweight and obese individuals 
is predicted to hit 89 and 85 percent in men and 
women, respectively[1,2]. Even though excessive 
weight gain is associated with metabolic syndrome 
disorders, including hyperglycemia, dyslipidemia, 
high blood pressure, atherosclerosis[3,4], diabetes, and 
cardiovascular disease, the global obesity epidemic 
is a significant challenge to human health[5,6]. An 
unusual increase in the number and size of adipocytes 
causes obesity due to excessive fat accumulation 
in White Adipose Tissue (WAT)[7]. Apart from the 
widely accepted high-caloric intake, genetic and 
epigenetic factors play roles in obesity, as evident 
from different studies[8,9].

Non-coding Ribonucleic Acid (ncRNA) molecules 
are genomic sequence transcripts not intended to 
be translated[10]. Short ncRNA (sncRNA equals 30 
nt) and long ncRNA (lncRNA greater than 200 nt) 
are two ncRNAs categorized arbitrarily based on 
the length of RNA produced post-transcriptionally. 
With the discovery and functional characterization of 
lncRNAs, the family of regulatory Ribonucleic Acids 
(RNAs) has seen an explosion in the past decade. 

LncRNAs are a distinctive class of transcripts of more 
than 200 nucleotides, frequently polyadenylated and 
missing an active open reading frame[11-13]. LncRNAs 
categories are intergenic, antisense, divergent, 
intronic, and enhancer lncRNAs based on the relative 
location of the neighboring coding genes (fig. 1). 
The control of cellular functions by lncRNAs is by 
various mechanisms; they could act as scaffolds, 
decoys, or guides[12,14].

LncRNAs control gene expression at both the 
transcriptional and post-transcriptional levels, 
resulting in several biological processes such as 
tumor initiation, growth, and metastasis in various 
human diseases, including cancer[15-17] and in some 
obesity-related conditions.

LncRNAs in the adipogenesis process and its 
implication in obesity:

Adipocytes are peculiar cells destined to store 

Regulation of Adipogenesis Process by PU.1 Antisense  
Long-Non-Coding Ribonucleic Acid: A Review
SURUMI BEEVISHA1*, A. J. NAIR, R. RAJALAKSHMI AND C. PRABHA KUMARI1

Department of Biotechnology, Inter University Centre for Genomics and Gene Technology, University of Kerala, Trivandrum, 
Kerala 695581, 1Department of Biotechnology, CEPCI Laboratory and Research Institute, Kollam, Kerala 691001, India

Accepted 01 September 2023
Revised 04 July 2023

Received 14 September 2021
Indian J Pharm Sci 2023;85(5):1190-1197

This is an open access article distributed under the terms of the Creative 
Commons Attribution-NonCommercial-ShareAlike 3.0 License, which  
allows others to remix, tweak, and build upon the work non-commercially,  
as long as the author is credited and the new creations are licensed under 
the identical terms



September-October 2023Indian Journal of Pharmaceutical Sciences1191

www.ijpsonline.com

excess energy as triglycerides and are involved in 
adipokine secretion that impairing systemic energy 
homeostasis[18]. Obesity typically happens when 
the volume or size of adipocytes increases[18]. WAT 
and Brown Adipose Tissue (BAT) are the two 
distinct kinds of mammalian adipose tissue. WAT is 
essential for storing and secretion of adipokines that 
affect energy homeostasis and metabolic processes, 
while BAT specializes in energy expenditure and 
thermogenesis[19,20]. Maintaining normal adiposity 
and optimizing lipid metabolism requires a 
proper balance of these processes. WAT consists 
of adipocytes generated by the differentiation 
of preadipocytes. Very high or low WAT leads 
to metabolic disorders such as hyperlipidemia, 
resistance to insulin, and type 2 diabetes[21]. For 
optimum health, maintenance of sufficient amounts 
of WAT is essential. The two primary types of 
white adipose tissue are Subcutaneous Adipose 
Tissue (SAT) below the skin and Visceral Adipose 
Tissue (VAT) found inside particular regions of the 
abdominal cavity[22]. Excessive fat accumulations 

relative to both SAT and VAT are responsible for 
the incidence of various metabolic diseases[23], 
especially fat accumulation in VAT, regarded as a 
high-risk factor for many metabolic disorders and 
cardiovascular diseases[24-26]. For a long time, studies 
on the differentiation of visceral adipocytes and their 
potential regulatory mechanisms have been at the 
forefront of obesity science. Adipose tissue also serves 
as an endocrine organ by secreting adipokines that 
impact the body's glucose and energy homeostasis[27]. 
A cascade of transcription factors, cofactors, and 
signaling intermediates from various pathways 
orchestrates the adipogenesis process[7]. Adipogenic 
differentiation is mainly monitored by the master 
regulator peroxisome proliferator activator receptor 
for adipogenesis, together with other transcription 
factors and cofactors like CCAAT/enhancer binding 
proteins (C/EBPs), Kruppel-like factors (KLFs) 
or Wingless proteins (Wnt)[28]. The regulation of 
adipogenesis happens in multidimensional ways 
involving components of numerous pathways in a 
co-ordinated manner sequentially, as seen in fig. 2.

Fig. 1: Classification of lncRNA relative to its genomic location
Note: a: Intergenic lncRNAs sited between protein-coding genes; b: Bidirectional lncRNAs transcribed from the same promoter as a protein-coding 
gene but in the opposite direction; c: Antisense lncRNAs originate from the antisense RNA strand of a protein-coding gene and d: Sense-overlapping 
lncRNAs overlap with one or more introns and/or exons of a protein-coding gene in the sense RNA strand direction
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The role of RNAs, especially ncRNAs, has recently 
been extensively studied for their contribution 
to the production and function of adipose tissue. 
In many studies, the role of sncRNAs, including 
micro RNAs, in BAT and WAT biology. While 
the role of lncRNA in maintaining adipose tissue 
activities is in a few research studies only[29], after 
analyzing the differential expression of lncRNAs 
across primary WAT and BAT, preadipocytes, and 
cultured adipocytes, Sun et al.[29] characterized 175 
lncRNAs regulated during adipogenesis. The group 
pointed out and analyzed 20 lncRNAs likely to be 
controlled by Peroxisome Proliferator-Activated 
Receptor gamma (PPARγ) and C/EBPs, the master 
regulators of adipogenesis. They also carried out 
a loss-of-function screen and demonstrated that 
10 of them, including lncRAP-1 and lncRAP-2, 
function to modulate adipocyte differentiation[29]. 
Many other studies also showed definite roles of 
lncRNAs in adipogenesis and adipocyte biology 
networks. Utilizing RNA-seq analysis, Alvarez et 
al.[30] identified 1500 lncRNAs expressed in inguinal 
white, epididymal, and brown fat in mice. Exclusive 
expression of 127 lncRNAs was associated with BAT, 
most targeting the critical regulators of adipogenesis, 
including C/EBPα, C/EBPβ, and PPARγ. Table 1 
describes the role of various lncRNAs involved 
during adipogenic differentiation. The exact role and 
function of lncRNAs in obesity and adipogenesis are 

still unknown, even if there is rapid research in this 
area[31-61].

Targeting RNA molecules as a promising therapeutic 
approach:

Identifying the potential targets modifiable 
therapeutically to deal with the broad clinical 
needs of patients with various ailments is critical. 
Most clinical drugs target proteins[62]; however, as 
they can also interact with proteins that aren't their 
targets, these frequently cause problems. RNA 
represents one class of targets, as proteins come 
from specific messenger RNAs (mRNAs); hence, 
modulations in mRNAs or pre-mRNA levels could 
broaden the therapeutic targets. Nucleic acids are 
evolving therapeutics for unmet medical needs since 
they might cause fewer side effects than existing 
therapies[63]. The drawbacks of targeting proteins 
using conventional small-molecule or protein-
based strategies (adapter proteins, transcription 
factors, etc.) can be easily targeted by modulating 
the mRNA levels and translation to the protein. 
Identifying ncRNAs' unique regulatory roles and 
roles in normal cellular physiology is expanding, as 
RNAs can directly promote pathology[64]. Current 
strategies to modulate the RNA functions in cells 
include the usage of small molecules targeting 
RNA, genome editing, gene therapy, delivery of 
exogenously expressed mRNAs genome editing, 

Fig. 2: Regulation of adipogenesis happens in multidimensional ways involving components of numerous pathways
Note: (  ): Promote and (  ): Inhibit
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been dysregulated in various disease states[70]. 
Computational studies suggest that 15-25 % of 
mammalian genes overlap, giving primarily to 
pairs of sense and antisense RNAs[71]. NATs, mostly 
categorized as AS lncRNAs,  play notable roles in 
the clarified regulation of animal genes in almost 
all stages of gene expression, from transcription 
initiation to translation to RNA degradation[72]. 
However, we know little about their exact functions 
and molecular mechanisms in many biological 
processes, especially in animal adipogenesis. The 
mammalian genome contains large spans of AS 
lncRNAs, and recent studies have indicated that some 
of these AS lncRNAs might be functional[73]. The 
biological role of antisense lncRNAs, despite their 
low expression, could still be rationalized because 
there are two copies of DNA for any given gene 
in a cell; consequently, just two antisense lncRNA 
molecules are sufficient to interact with the two gene 
copies and elicit regulatory effects[74] AS lncRNAs 
at numerous gene loci silences sense transcription 
by affecting histone acetylation and methylation 
states and regulating mRNA dynamics at a post-
transcriptional level[75]. Many studies indicated that 
AS lncRNA decreases mRNA levels, such as AS 
lncRNAs of tie‐1[76], Fibroblast Growth Factor‐2 
(FGF‐2)[77], and Multiple peptide resistance factor 
(MprF)[78]. The regulatory mechanism of AS lncRNA 
remains unclear, although there is evidence for the 
regulation by similar means as for protein-coding 
genes. AS lncRNAs play a positive or negative role 
in translation[79], transcription[80-82] and stabilization 
of mRNA[83].

and synthetic Antisense Oligonucleotides (ASOs). 
ASOs are oligonucleotides artificially synthesized 
with a size range of 12-30 nucleotides designed to 
bind to RNA by Watson-Crick base pairing rules. 
They can bind uniquely to only one target RNA, 
modulating its function by several mechanisms[65]. 
Nowadays, antibacterial and anti-cancer therapies 
use drugs targeting nucleic acids. One primary 
approach to targeting lncRNAs for treatment is 
deregulating high lncRNA levels with ASOs, which 
block lncRNA activity, further leading to their 
degradation. Alternatively, the lncRNA function 
may be blocked by small molecules that cover the 
binding site of interrelating proteins or by antisense 
oligonucleotides that connect to the lncRNAs and 
restrain their protein binding capacity[66]. ASOs can 
target those lncRNAs that positively regulate white 
adipogenesis (up-regulated) instead of brown as 
a control method of obesity. Preliminary in vitro 
studies[67] showed that the ASO approach could be 
a critical tool for treating obesity. The practicability 
of ASO therapy for targeting lncRNAs is in some 
pre-clinical models; Antisense phosphorothioate 
oligonucleotides can target lncRNAs involved in 
Angelman syndrome and lung cancer in mice[68].

Natural Antisense (AS) transcripts (NATs) are 
RNA molecules transcribed from the opposite 
Deoxyribonucleic Acid (DNA) strand and partly 
overlap with sense mRNA. Antisense (AS) RNA 
is a relatively uncommon term in a physiology 
environment until short interfering RNAs emerged 
as the tool of choice to knock down the expression 
of specific genes[69]. Recently, NAT levels have 

lncRNAs Functions References

SRA Improves white adipogenesis [31-33]

NEAT1 Improves white adipogenesis [34,35]

Lnc-RAP-n Improves white adipogenesis [29,36]

SlincRAD Improves white adipogenesis [37]

PU.1 AS Improves white adipogenesis [38,39]

ADINR Improves white adipogenesis [40]

Paral1 Improves white adipogenesis [41]

lnc-leptin Improves white adipogenesis [42]

HOTAIR Improves white adipogenesis [43]

ADNCR Represses white adipogenesis [44]

HoxA-AS3 Improves white adipogenesis [45]

lnc-U90926 Represses white adipogenesis [46]

TABLE 1: LncRNAs INVOLVED IN REGULATING THE ADIPOGENESIS PROCESS
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and negatively influence adipogenesis[91].

Recent studies validated that a novel mechanism of 
gene regulation was found in mouse PU.1 locus, as 
the locus gave rise to both mRNA and NATs, as AS 
lncRNAs, which originated from an intronic promoter, 
and PU.1 gene level regulated through coordinated 
expression of its mRNA and AS lncRNAs[92]. 
Antisense RNAs could regulate the expression of 
their respective gene-altering processes in which 
they are involved. Previous studies indicated that 
PU.1 AS lncRNA promoted adipogenesis in 3T3-L1 
adipocytes by preventing PU.1 mRNA translation[93]. 
PU.1 AS-PU1 RNA duplex inhibits adipogenesis 
and modulation of sense gene expression by altering 
its protein expression and decreasing PPARγ, fatty 
acid synthase, and adiponectin expression in the 
mouse. The porcine PU.1 locus transcribed both 
PU.1 mRNA and PU.1 AS lncRNA, which regulates 
adipogenesis[93]. Antisense lncRNA overlaps 
PU.1 mRNA and negatively affects PU.1 protein 
expression via blocking translation without down-
regulating mRNA levels. The regulatory mechanism 
in general for the PU.1 AS lncRNA during terminal 
differentiation of adipogenesis is shown in fig. 3. 
Knockdown of PU.1 AS lncRNA in zebrafish or 
mice up-regulated levels of PU.1 mRNA, causing 
expression changes of downstream genes[93]. These 
findings suggest that the same AS lncRNA showed 
distinct regulatory mechanisms, which is crucial 
because of its size and position in different species. 
Moreover, lncRNAs are so long and complicated 
that a slight disparity in the sequence may lead to 
a tremendous change in the secondary structure, 
distinctly altering their functions and mechanisms.

PU.1 AS lncRNA in adipogenesis:

The PU.1 gene was initially recognized as a proviral 
integration site for the Spleen Focus-Forming Virus 
(SFFV) in erythroleukemia[84]. The transcription 
factor Spi1/PU.1 (SFFV proviral integration 
oncogene/PU box binding protein) is a hematopoietic 
ETS family member that is influences in the immune 
system generation[85]. PU.1 is a critical transcription 
factor in biological processes, for it plays crucial  
roles not only in the hematopoiesis and immune 
system development[85] but also in cell cycle exit[86,87] 
and epigenetic silencing[88]. PU.1 functions solely in 
a cell-intrinsic manner to monitor the development 
of granulocytes, macrophages, and B and T 
lymphocytes[89]. PU.1 deficiency generally arrests 
lymphopoiesis and myelopoiesis in mice fatally, very 
recently human congenital PU.1 disorder has been 
recognized in six agammaglobulinemia patients with 
varying SPI1 mutations but shared insufficient levels 
of PU.1 and absence of B cells with consequently, 
zero antibodies and the condition got reversed on 
CRISPR editing of SPI1 in cord blood in vitro[90].

Overexpression of PU.1 downregulated essential 
adipogenic genes C/EBPβ and PPARγ in the C/
EBPα/β-PPARγ terminal pathway of adipogenic 
differentiation[91]; however, the underlying mechanism 
that PU.1 suppressed the expression of C/EBPb and 
PPARc remains elusive. Two master regulators-C/
EBPβ/α and PPARγ regulate adipogenesis, which in 
turn could be strongly inhibited by PU box-binding 
protein (PU.1). Proven to be expressed in the adipose 
tissue of humans and other animals, PU.1 could 
suppress the C/EBPβ/α-PPARγ pathway, significantly 

MIR31HG Improves white adipogenesis [47]

Gm15290 Improves white adipogenesis [48]

TCONS_00041960 Improves white adipogenesis [49]

HoxA11-AS1 Improves white adipogenesis [50]

Adiponectin AS Represses white adipogenesis [51]

MEG3 Represses white adipogenesis [52]

H19 Represses white adipogenesis [53,54]

Blnc1 Improves brown adipogenesis [55,56,57]

lnc-BATE1; lnc-BATE Improves brown adipogenesis [30,58]

lnc-uc.417 Represses brown adipogenesis [59]

AK079912 Improves brown adipogenesis [60]

GM13133 Improves brown adipogenesis [61]
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CONCLUSION
Therapeutic interventions in obesity depend on 
knowledge of molecular mechanisms that could 
help prevent adipogenesis. This review presents a 
recent approach to targeting adipogenesis utilizing 
antisense non-coding transcripts, indirectly, obesity. 
The data revealed the definite mechanism of PU.1 
inhibiting adipogenesis and provided insight into 
the adipogenesis regulatory networks. Shortly, we 
will witness comprehensive and functional aspects 
of lncRNAs during all stages of metabolism. It is 
interesting to consider a combination of multiple 
schemes aiming at molecular mechanisms targeting 
adipogenesis could emerge for beneficial personalized 
treatment of obesity and its related complications.
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