Indian Journal of Pharmaceutical Sciences

Scientific Publication of the Indian Pharmaceutical Association

Indexed in Ind MED, EMBASE/Excerpta Medica, International Pharmaceutical Abstracts, Chemical Abstracts.

Volume 69

Number 6

November-December 2007

CONTENTS

REVIEW ARTICLES

Cholesteryl Ester Transfer Protein: A Potential Target for	the
Treatment of Coronary Artery Disease HARSHA PATEL, JIGNA SHAH, SUNITA PATEL AND	
I. S. ANAND	735-740
Properties and Formulation of Oral Drug Delivery System	is of
Protein and Peptides A. SEMALTY, MONA SEMALTY, R. SINGH, S. K. SARAF AND	
SHUBHINI SARAF	741-747
RESEARCH PAPERS	
Fabrication and Evaluation of Asymmetric Membrane Os Pump	motic
C. S. CHAUHAN, M. S. RANAWAT AND P. K. CHOUDHURY	748-752
Studies of Disintegrant Properties of Seed Mucilage of O	cimum
<i>gratissimum</i> RAVIKUMAR, A. A. SHIRWAIKAR, ANNIE SHIRWAIKAR,	
S. LAKHSHMANA PRABU, R. MAHALAXMI, K. RAJENDRAN AND	
C. DINESH KUMAR	753-758
Simultaneous Spectroscopic Estimation of Ezetimibe and	k
Simvastatin in Tablet Dosage forms S. J. RAJPUT AND H. A. RAJ	759-762
Formulation and Optimization of Carbamazepine Floating Tablets	J
D. M. PATEL, N. M. PATEL, N. N. PANDYA	
AND P. D. JOGANI	763-767
Effects of <i>Medicago sativa</i> on Nephropathy in Diabetic Ra	ats
M. S. MEHRANJANI, M. A. SHARIATZADEH, A. R. DESFULIAN,	760 770
M. NOORI, M. H. ABNOSI AND Z. H. MOGHADAM	768-772
Development of Hospital Formulary for a Tertiary Care Te Hospital in South India	acning
R. J. D'ALMEIDA, LEELAVATHI D. ACHARYA, PADMA G. M. RAO	,
J. JOSE AND RESHMA Y. BHAT	773-779
Simultaneous Spectrophotometric Estimation of Rosiglitazone Maleate and Glimepiride in Tablet Dosage Forms	
ANJU GOYAL AND I. SINGHVI	780-783
Preparation, Characterization and Antimicrobial Activity	of
Acrylate Copolymer Bound Amoxycillin	
J. S. PATEL, H. R. PATEL, N. K. PATEL AND D. MADAMWAR	784-790
Haematinic Evaluation of <i>Lauha Bhasma</i> and <i>Mandura Bl</i>	hasma
on HgCl ₂ -Induced Anemia in Rats P. K. SARKAR, P. K. PRAJAPATI, A. K. CHOUDHARY,	
V. J. SHUKLA AND B. RAVISHANKAR	791-795
RPHPLC Method for the Estimation of Glibenclamide in F	luman
Serum	
S. D. RAJENDRAN, B. K. PHILIP, R. GOPINATH AND	706 700
B. SURESH	796-799
2D QSAR of Arylpiperazines as 5-HT _{1A} Receptor Agonists JRMILA J. JOSHI, SONALI H. TIKHELE AND F. H. SHAH	800-804
Antiproliferative and Cancer-chemopreventive Properties Sulfated Glycosylated Extract Derived from Leucaena	of
Ieucocephala Amira M Gamal-Fideen H Amer W A Heimy H M RAGA	в

AMIRA M. GAMAL-ELDEEN, H. AMER, W. A. HELMY, H. M. RAGAB AND ROBA M. TALAAT 805-811

SHORT COMMUNICATIONS

SHORT COMMUNICATIONS	
Simultaneous Derivative and Multi-Component Spectrophotometric Determination of Drotaverine Hydrochloride and Mefenamic Acid in Tablets P. P. DAHIVELKAR, V. K. MAHAJAN, S. B. BARI, A. A. SHIRKHEDKAR, R. A. FURSULE AND S. J. SURANA	812-814
Design and Synthesis of Substituted 2-Naphthyloxyethy as Potential 5-HT _{1A} Antagonists	
URMILA J. JOSHI, R. K. DUBE, F. H. SHAH AND S. R. NAIK	814-816
Diuretic Activity of <i>Lagenaria siceraria</i> Fruit Extracts in F B. V. GHULE, M. H. GHANTE, P. G. YEOLE AND A. N. SAOJI	817-819
Determination of Racecadotril by HPLC in Capsules S. L. PRABU, T. SINGH, A. JOSEPH, C. DINESH KUMAR AND A. SHIRWAIKAR	819-821
Novel Spectrophotometric Estimation of Frusemide Usin Hydrotropic Solubilization Phenomenon R. K. MAHESHWARI, S. DESWAL, D. TIWARI, N. ALI, B. POTHEN AND S. JAIN	0
In Vivo Pharmacokinetic Studies of Prodrugs of Ibuprofe ABHA DOSHI AND S. G. DESHPANDE	en 824-827
Protective Effect of <i>Tamarindus indica</i> Linn Against Paracetamol-Induced Hepatotoxicity in Rats B. P. PIMPLE, P. V. KADAM, N. S. BADGUJAR, A. R. BAFNA AND M. J. PATIL) 827-831
Simultaneous Estimation of Atorvastatin Calcium and Amlodipine Besylate from Tablets P. MISHRA, ALKA GUPTA AND K. SHAH	831-833
Development and Validation of a Simultaneous HPTLC M for the Estimation of Olmesartan medoxomil and Hydrochlorothiazide in Tablet Dosage Form N. J. SHAH, B. N. SUHAGIA, R. R. SHAH AND N. M. PATEL	834-836
Orodispersible Tablets of Meloxicam using Disintegrant for Improved Efficacy P. V. SWAMY, S. H. AREEFULLA, S. B. SHIRSAND, SMITHA CANDRA AND R. DRACHANTH	
SMITHA GANDRA AND B. PRASHANTH Spectrophotometric Method for Ondansetron Hydrochlo	836-840
SRADHANJALI PATRA, A. A. CHOUDHURY, R. K. KAR AND B. B. BARIK	840-841
HPTLC Determination of Artesunate as Bulk Drug and in Pharmaceutical Formulations	
S. P. AGARWAL, A. ALI AND SHIPRA AHUJA	841-844
Simultaneous Spectrophotometric Estimation of Metform Repaglinide in a synthetic mixture	nin and
J. R. PATEL, B. N. SUHAGIA AND B. H. PATEL	844-846
Synthesis and Antiinflammatory Activity of Substituted (2-oxochromen-3-yl) benzamides V. MADDI, S. N. MAMLEDESAI, D. SATYANARAYANA AND	
S. SWAMY	847-849
Evaluation of Hepatoprotective Activity of Ethanol Extra Ptrospermum acerifolium Ster Leaves	
S. KHARPATE, G. VADNERKAR, DEEPTI JAIN AND S. JAIN	850-852
New Antihistaminic Agents: Synthesis and Evaluation of	H1-An-

New Antihistaminic Agents: Synthesis and Evaluation of H1-Antihistaminic actions of 3-[(N,N-Dialkylamino)alkyl)-1,2,3,4-tetrahydro-(1H)-thioquinazolin-4(3H)-ones and Their oxo Analogues M. B. RAJU, S. D. SINGH, A. RAGHU RAM RAO AND K. S. RAJAN 853-856

Simultaneous Spectrophotometric Estimation of Metformin and Repaglinide in a synthetic mixture

J. R. PATEL*, B. N. SUHAGIA² AND B. H. PATEL¹

¹Department of Pharmaceutical Chemistry, S. K. Patel College of Pharmaceutical Education and Research, Ganpat Vidyanagar, Mehsana - 382 711, India, ²Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad - 380 009, India

Patel, et al.: Simultaneous Estimation of Metformin and Repaglinide in Synthetic Mixture

Two simple, rapid, accurate and economical methods have been developed for the simultaneous estimation of metformin and repaglinide in the synthetic mixture. The linearity was observed in the concentration range of 4-24 µg/ml for the both metformin and repaglinide. First method is based on the simultaneous equations, absorbances of both the drugs were determined at 240 nm (λ max of metformin) and at 291.5 nm (λ max of repaglinide). Metformin does not show any absorbance at 291.5 nm, hence its absorptivity was taken zero in the calculation. The method was validated in terms of accuracy (99.24±0.99, 100.98±0.89) and precision (intra-day variations 0.58-1.21, 2.12-3.12 and inter-day variations 0.62-1.42, 2.20-3.08). Second method is based on Q-absorbance ratio; absorbances of both the drugs were determined at 240 nm (λ max of metformin) and at isoabsorptive point (254.8 nm). Q-absorption ratio method was validated in terms of accuracy (98.57±1.05, 98.62±1.2402) and precision (intra-day variations

*For correspondence

E-mail: bhpmph@yahoo.co.in

0.58-1.21, 1.01-3.53 and inter-day variations 0.62-1.42, 1.15-3.74). The proposed methods were found accurate, reproducible and economical for the routine analysis of both the drugs in the synthetic mixture.

Key words: Metformin, repaglinide, spectrophotometric analysis

Metformin Hydrochloride (MET) is a biguanide class of antidiabetic drug, chemically is N,N-dimethylimidodicarbonimidic diamide hydrochloride^{1,3-12}. Repaglinide (REPA) is a meglitinide antidiabetic used for the treatment of type 2 diabetes mellitus, chemically is (+)-2-ethoxy- α -{[(*S*)- α -isobutyl*o*-piperidinobenzyl]carbamoyl}-*p*-toluicacid^{2,13-15}.

Shimadzu model 1601 double beam UV/Vis spectrophotometer with a pair of 10 mm matched quartz cells was used to measure absorbance of the resulting solutions. Sartorius CP224S analytical balance, an ultrasonicater (Frontline FS 4). MET and REPA were obtained from Restech Pharmaceutical, Ahmedabad and absolute alcohol from S. D. Fine Chemicals, Mumbai.

Standard MET and REPA stock solution of $100\mu g/ml$ concentration was prepared in absolute alcohol. The synthetic mixture of MET and REPA was prepared in the ratio of 1:1. MET and REPA powder (5 mg each) was accurately weighed and transferred to 50 ml volumetric flask. The content was mixed with 40 ml alcohol. Common excipients, which are used in the tablet formulation, were added in this mixture and sonicated for 20 min. This solution was filtered through the Whatman filter paper No. 41 and the residue was washed thoroughly with alcohol. The filtrate and washings were combined and diluted to the 50 ml with alcohol to get solution having MET (100 µg/ml) and REPA (100 µg/ml).

The standard stock solutions of MET and REPA were scanned in the range of 200 nm to 400 nm against absolute alcohol as a blank. Maximum absorbance was obtained at 240 nm and 291.5 nm for MET and REPA, respectively. Iso-absorptive point was found at 254.8 nm. A calibration curve was plotted over a concentration range 4-24 μ g/ml for both MET and REPA. Absorbance of each solution was measured at both the wavelength 240 nm and 291.5 nm. Calibration curves were constructed for MET and REPA by plotting absorbance versus concentrations at both wavelengths. Each reading was average of three determinations. Absorbance of each solution was

measured at the three wavelengths 240 nm, 291.5 nm and 254.8 nm. Calibration curves were constructed for MET and REPA by plotting absorbance versus concentrations at three wavelengths. Each reading was average of three determinations.

Accuracy was determined in term of percent recovery. The proposed method was applied to determine MET and REPA in the synthetic mixture. The recovery experiments were carried out in triplicate by spiking previously analyzed samples of the synthetic mixture with three different concentrations of standards. Precision was determined in term of intra-day and inter-day precision. The absorbance of final sample solution was measured against absolute alcohol as a blank at 240, 291.5 and 254.8 nm. The amount of MET and REPA were calculated using simultaneous equations as well as Q-absorbance ratio method.

Calibration curves for MET and REPA over concentration range of 4-24 µg/ml were plotted and molar absorptivity for both the compounds were calculated at three wavelengths 240 nm (λ max of MET), 254.8 nm (Isoabsorptive point) and 291.5 nm (λ max of REPA). MET did not show any absorbance at 291.5 nm, hence absorptivity of MET was taken zero in the calculation. The linearity of the calibration graphs was validated by the high value of correlation coefficients of the regression (Table 1). The criteria for obtaining maximum precision¹, by simultaneous equations method, were calculated and found to be out side the range 0.1-2.0.

LOD for MET and REPA were found to be 0.38 μ g/ml and 0.69 μ g/ml, respectively while LOQ for MET and REPA were found to be 1.15 μ g/ml and 2.08 μ g/ml respectively by both the methods. These data show that both the methods are sensitive for the determination of MET and REPA.

The percent recoveries obtained were 99.24 to 101.23 and 100.98 to 101.08 for MET and REPA, respectively by simultaneous equation method; 98.05 to 99.05 and 98.62 to 99.12 for MET and REPA, respectively by Q-absorbance ratio method. The low value of SD

TABLE 1: SUMMARY OF VALIDATION PARAMETERS FOR SIMULTANEOUS EQUATION AND Q-ABSORPTION RATIO METHODS

Parameters	240 nm		291.5 nm	254.8 nm			
	REPA	MET	REPA	MET AND REPA			
Beer's law limit	4-24	4-24	4-24	4-24			
(µg/ml)							
Molar Absorptivity	10249	9904	3220	1634 (MET)			
(lit/mole/cm)				5729 (REPA)			
Sandell's sensitivity							
(µg/ml/cm²/0.001) 0.0126	0.0459	0.1408	0.0791			
LOD (µg/ml)	0.378	0.686	1.206	0.869			
LOQ (µg/ml)	1.146	2.081	3.98	2.695			
Regression							
equation	y= 0.0806x	y= 0.0232x	y= 0.0066x	y= 0.0132x			
(y= a+bc)	+ 0.0085	-0.0205	+ 0.0028	-0.0076			
Correlation	0.9993	0.9980	0.9988	0.9986			
coefficient (r ²)							
Precision							
Intra-day	0.58-1.21	1.00-3.01	2.12-3.12	1.01-3.53			
(n=5) (%CV)							
Inter-day	0.62-1.42	1.12-3.23	2.20-3.08	1.15-3.74			
(n=5) (%CV)							

indicates that both the methods are accurate. The low % CV values of intra-day and inter-day variations reveal that the proposed methods are robust (Table 1).

In the simultaneous equation method concentration of MET and REPA in the synthetic mixture were found out by solving following equations; $C_m = (A_2a_{r1} - A_1a_{r2})/(a_{m2}a_{r1} - a_{m1}a_{r2})$ and $C_r = (A_1a_{m2} - A_2a_{m1})/(a_{m2}a_{r1} - a_{m1}a_{r2})$, where; C_m , $C_r =$ concentration of MET and REPA in the sample solution, A_1 , $A_2 =$ absorbances of the sample solution at 240 nm and 291.5 nm, respectively, a_{m1} and $a_{m2} =$ molar absorptivities of MET at 240 nm and 291.5 nm, respectively and a_{r1} and $a_{r2} =$ molar absorptivities of REPA at 240 nm and 291.5 nm, respectively

In the Q- absorbance ratio method concentration of MET and REPA in the sample solutions were calculated using equations $C_{m2} = (Q_o - Q_r/Q_m - Q_r) \times A_3/a_{m3}$ and $C_{p2} = A_3/a_{r3} - C_{m2}$, where A_1 and A_3 are absorbances of sample solution at 240 nm and 254.8 nm; and a_{m3} and a_{r3} are molar absorptivity of MET and REPA at 254.8 nm; a_{m1} and a_{r1} are molar absorptivity of MET and REPA at 240 nm. $Q_o = A_1/A_3$, $Q_m = a_{m1}/a_{m3}$ and $Q_r = a_{r1}/a_{r3}$.

The proposed validated methods were successfully applied to determine MET and REPA in the synthetic mixture. The % recoveries for MET and REPA obtained were 101.56 ± 1.20 , 101.00 ± 1.53 by simultaneous equations method and 98.01 ± 1.58 ,

 98.15 ± 1.63 by Q-absorption ratio method respectively. No interference of the excipients with the absorbance appeared; hence the proposed methods are applicable for the quantitative determination of MET and REPA in synthetic mixture.

REFERENCES

- Budavari S, editor. The Merck Index. 13th ed. Whitehouse station, (NJ, USA): Merck and Co; 2001. p. 790.
- Budavari S, editor. The Merck Index. 13th ed. Whitehouse station, (NJ, USA): Merck and Co; 2001. p. 1458.
- Song-Jin T, Jing-Zheng S, Hai-Feng C, Zeng-Pei S. Determination of Metformin in plasma by capillary electrophoresis using field amplified sample stacking technique. J Chromatogr B 1998;708:277-81.
- Ojala-Karlsoon P, Rouru J, Koulu M. Determination of Metformin in plsam by high performance liquid chromatography. J Chromatotgr A 1992;583:270-5.
- Ross MS. Dried blood spot liquid chromatography assay for therapeutic drug monitering of Metformin. J Chromatogr A 1977;133:408-10.
- Aburuz S, Millership J, McElnay J. The development and validation of liquid chromatography method for simultaneous determination of Metformin and glipizide, gliclazide, glibenclamide in plasma. J Chromatogr B 2005;817:277-82.
- Koseki N, Kawashita H, Niina M, Nagae Y, Masuda N. Development and validation for high selective quantitative determination of metformine in human plasma by cation exchanging with normal phase LC/MS/MS. Pharm Biomed Anal 2005;36:1063-6.
- Wang Y, Tang Y, Gu J, Fawcett JP, Bai X. Rapid and sensitive liquid chromatography-tandem mass spectrometric method for quantitation of Metformin in human plasma. J Chromatogr B 2004;808:215-9.
- Kolte BL, Raut BB, Deo AA, Bagool MA Shinde DB, Simultaneous high performance liquid chromatographic determination of Pioglitazone and Metformin in pharmaceutical dosage form. J Chromatogr Sci 2004;42:27-30.
- Zhang M, Moore GA, Lever M, Gardiner SJ, Kirkpatrick CM, Begg EJ. Rapid and simple high performance liquid chromatographic assay for the determination of Metformin in human plasma and breast milk. Pharm Biomed Anal 2001;25:77-82.
- Gandhimathi M, Anandakumar K, Cheriyan A, Ravi TK. Simultaneous estimation of Metformin and gliclazide in tablet using reverse phase high performance liquid chromatography. Indian J Pharm Sci 2003;65:530-4.
- Jain AK, Agrawal RK. Simultaneous estimation of Gliclazide and Metformin hydrochloride in combined dosage forms. Indian J Pharm ci 2002;64:88-91.
- Gandhimathi M, Ravi TK, Renu SK. Determination of Repaglinide in pharmaceutical formulation by HPLC with UV detection. Anal Sci 2003;9:1675-8.
- Reddy KV, Babu JM, Mathad VT, Eswaraiah S, Reddy MS, Dubey PK, et al. Impurity profile study of Repaglinide. J Pharm Biomed Anal 2003;32:461-5.
- Jain SK, Agrawal GP, Jain NK. Spectrophotometric determination of Repaglinide in tablet dosage form. Indian J Pharm Sci 2005;67:249-51.

Accepted 23 December 2007 Revised 13 July 2007 Received 5 December 2005 Indian J. Pharm. Sci., 2007, 69 (6): 844-846