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Xiao et al.: Role of Autophagy as Biomarkers in the Pathogenesis of Heart Failure

Heart failure is a significant public health challenge, persisting as a prime contributor to mortality 
and morbidity. Autophagy, as a cellular process, plays a crucial role in maintaining an optimal 
intracellular environment and holds therapeutic potential in the context of heart failure, but the 
correlation between autophagy and heart failure has yet to be fully elucidated. Single cell ribonucleic 
acid sequencing is a powerful method for investigating cell-specific transcriptome changes in heart 
failure. The study aimed to find autophagy-related molecules, mechanisms, and pathways at the 
single-cell level. Additionally, we sought to assess the prognostic implications for individuals with 
heart failure. First, we downloaded the heart failure related datasets from the Gene Expression 
Omnibus database to identify autophagy-related differential genes. We identified 9 cell-specific 
transcriptional signatures associated with autophagy that might be involved in heart failure 
progression, and the expression of these genes was detected by single-cell strategy. Correlation 
analysis revealed the relationships between these genes and the expression patterns of various 
immune cell types. The results of functional enrichment analysis revealed a strong association of 
autophagy-related genes with cellular responses to external stimuli, as well as significant enrichment 
in lipid metabolism, atherosclerosis, and the phosphoinositide 3-kinase/protein kinase B signaling 
pathway. Potential targets were predicted by protein-protein interaction and molecular docking. 
This study has yielded novel insights into the role of autophagy-related cell-type-specific expression 
genes as biomarkers in the pathogenesis of heart failure, and established a valuable resource for 
further investigations into the underlying molecular mechanisms.
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Heart Failure (HF) represents a severe and terminal 
stage of diverse heart diseases, encompassing high 
morbidity and mortality rates. Patients with HF 
often experience progressive exercise intolerance 
and respiratory distress, whether at rest or during 
physical exertion, especially in cases of underlying 
coronary heart disease, hypertension, diabetes, or 
myocarditis, as well as those who have undergone 
intensive alcohol consumption, chemotherapy, and/
or radiation therapy. Additionally, the condition can 
induce fatigue, fluid overload, marked by occurrences 
like pulmonary edema or ankle edema, and lead to 
structural and functional abnormalities within the 
heart. Treatment strategies encompass a range from 
the implementation of diuretics to alleviate symptoms, 
to the utilization of an expanding array of disease-
modifying drugs and device therapies. Notably, 
the emergence of Sodium-Glucose Cotransporter 

2 (SGLT2) inhibitors has ushered in a more recent 
enhancement of disease outcomes[1], but patients 
suffering from HF still have a poor prognosis and 
high mortality. It is necessary to explore and identify 
more effective prognostic biomarkers for therapeutic 
targets and clinical decisions[2]. 
Dilated Cardiomyopathy (DCM) is the main cause 
of HF. In DCM, a condition characterized by 
the enlargement and weakening of the heart’s 
chambers, the heart’s capacity to effectively pump 
blood throughout the body can be compromised. 
Consequently, these pathophysiological alterations 
can readily advance towards the development of 
HF. Therefore, it is critical to study the molecular 
mechanisms of DCM, enabling the identification 
of novel biomarkers for HF. Such endeavors 
hold the potential to unravel new treatment 
strategies. Autophagy, a process employed for 
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the intracellular degradation of organelles and 
proteins, holds special significance for the enduring 
cardiomyocytes implicated in heart disease. Central 
to this phenomenon is the auto phagosome, a pivotal 
process that entails the encapsulation of cytoplasmic 
constituents within a specialized double-membraned 
vesicle known as an auto phagosome. The autophagy 
pathway can be delineated into distinct stages, 
including induction, vesicle nucleation, selective 
cargo recognition, auto phagosome formation, fusion 
between auto phagosomes and lysosomes, cargo 
degradation, and nutrient recycling. Autophagy, a 
conserved mechanism, profoundly contributes to 
sustaining intracellular equilibrium through the 
degradation of long-lived proteins and compromised 
organelles. Importantly, this mechanism is now 
widely recognized as a promising therapeutic target 
for several heart diseases[3]. Recent studies have 
shown that both HF and DCM have been extensively 
linked to the intricate pathogenesis of autophagy, 
with excessive activation of this process culminating 
in the degradation of essential molecules and 
organelles vital for cell survival. This dysregulation 
ultimately drives organ failure and precipitates patient 
mortality. Furthermore, autophagic phenomena have 
been observed in both HF patients and relevant 
animal models. Research has indicated the protective 
role played by autophagy in both HF and DCM[4,5]. 
Nonetheless, the intricate relationship between 
autophagy and HF remains elusive, particularly at 
the single-cell level. Little insight exists on other 
immune subsets involved in the cardio toxic response, 
and the pathway for autophagy and all its mediators 
also remain to be elucidated. 
The single cell Ribonucleic Acid-sequencing 
(scRNA-seq) is a novel method for high-throughput 
sequencing in the genome on the basis of a single 
cell[6], which can investigate the specific cell types and 
gene expression state of a single cell, revealing the 
heterogeneity between cells[7]. Currently, scRNA-seq 
has emerged as a pivotal tool, providing profound and 
novel insights into the intricate pathophysiological 
processes underlying cardiovascular diseases. A 
multitude of studies have harnessed the potential of 
scRNA-seq, uncovering crucial alterations in cell-
specific gene expression that intricately contributing 
to the development of HF pathology. These alterations 
encompass a spectrum of conditions, including DCM, 
myocardial hypertrophy, and heart fibrosis. With its 
capacity to scrutinize gene expression patterns at 
the single-cell level, scRNA-seq technology holds 

great promise in identifying cell-specific molecular 
targets implicated in HF. However, it is essential to 
acknowledge that despite notable advancements in 
this field, the comprehensive elucidation of potential 
biomarkers within specific cell types, as discovered 
through scRNA-seq profiling of HF pathogenesis, 
necessitates further investigation and clarification.
In the present study, our aim was to identify the 
significant cell population and potential biomarker 
in HF. We downloaded the HF transcriptome 
dataset GSE5406 and GSE9128 as well as the 
scRNA-seq dataset GSE145154 related to HF from 
the Gene Expression Omnibus (GEO) database 
for bioinformatics analysis. The results provide 
insights into the cell-type-specific expression gene 
biomarker in HF development. Herein, we suggested 
a novel prognostic autophagy-related signature using 
Support Vector Machine (SVM) analysis followed 
by construction of Least Absolute Shrinkage and 
Selection Operator (LASSO) regression in HF. 
Significantly, we successfully identified a nine-gene 
signature associated with autophagy, and we utilized 
a single-cell strategy to detect the expression of 
these genes, such as Activating Transcription Factor 
4 (ATF4) and Microtubule-Associated Protein 1 
Light Chain (MAP1LC3B), in the context of HF. 
Studies have indicated that ATF4 plays a protective 
role against HF by counteracting oxidative stress. 
However, the relationship between MAP1LC3B and 
HF remains unclear. Investigating the mechanisms 
underlying the role of these genes in HF prognosis 
could offer novel insights into potential treatments 
for HF. Furthermore, these investigations could also 
provide a reference point for exploring the intricate 
relationship between autophagy and HF. 

MATERIALS AND METHODS

Data download and processing:

GSE5406[8] and GSE9128[9] microarray datasets, two 
data cohorts, and their corresponding sample clinical 
information were retrieved and downloaded from 
the GEO database (https://www.ncbi.nlm.nih.gov/
geo/). The sequencing platform for two datasets was 
based on GPL96. Gene ID conversion was performed 
through the annotation file of the sequencing platform 
and the samples in the datasets were derived from 
Homo sapiens. 210 samples were included in the 
GSE5406 dataset, of which 16 samples were normal 
and 194 samples were HF; 11 samples were included 
in the GSE9128 dataset, of which 3 samples were 
normal and 8 samples were HF. We selected the 
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normal control and HF samples from GSE5406 and 
GSE9128 datasets as the control group and disease 
group for analysis (n=221) and used the ComBat 
package to remove batch effects from the merged 
dataset and conduct subsequent analysis of the 
merged cohort[10].
The GSE145154 scRNA-seq dataset of HF was 
also downloaded from the GEO database[11], and 
the test platform was GPL20795 HiSeq X ten. It 
contains scRNA-seq data from 1 normal sample and 
3 HF samples, all of which were derived from Homo 
sapiens. Only the DCM sample from the HF sample 
was used for analysis in this study.

Identification of autophagy differential genes 
between the normal group and HF group:

222 autophagy genes were obtained from the 
Human Autophagy Database (HADb)[12] (http://
www.autophagy.lu/). We used the R package limma 
to perform a differential analysis of these genes in 
the merged cohort (logFC=0, p<0.05) to identify 
autophagy differential genes between the normal 
group and the HF group.
Search Tool for the Retrieval of Interacting Genes 
(STRING) (https://string-db.org/) is a database for 
searching interactions between known proteins and 
predictive proteins[13,14], which contains not only 
experimental data, results from text mining of PubMed 
abstracts and data from other databases, but also 
results predicted using bioinformatics. In this study, 
the STRING database was used to perform Protein-
Protein Interaction (PPI) network construction 
against the obtained autophagy differential genes.

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis:

GO analysis is a common method for large-scale 
functional enrichment studies[15], including 
Biological Process (BP), Molecular Function (MF), 
and Cellular Component (CC). The KEGG is a 
widely used database that stores information about 
genomes[16], biological pathways, diseases, and 
drugs. We used the clusterProfiler package to perform 
GO and KEGG enrichment analysis of autophagy 
differential genes (p<0.05)[17].

Screening of hub autophagy genes with HF by Lasso 
regression and SVM:

For the obtained autophagy differential genes, we 
used Lasso regression and SVM to further screen 
the disease feature genes of HF, and then we took 

the intersection of the genes obtained from the two 
methods and defined them as the hub autophagy 
genes with HF. The lasso regression was based on the 
glmnet package with a seed of 123, while the SVM 
was based on the caret package with a seed of 123[18].
For the identified hub autophagy genes, the diagnostic 
efficacy of each gene for HF was assessed in the 
merged cohort using a Receiver Operator Curve 
(ROC).

Unsupervised clustering analysis:

Unsupervised clustering is a resampling-based 
clustering algorithm for identifying each member and 
its number of subgroups and verifying the clustering 
rationality[19]. We used the ConsensusClusterPlus[20] 
package to identify different disease subtypes based 
on hub autophagy gene expression profile data for 
HF samples in a merged cohorts using unsupervised 
clustering.

Gene Set Enrichment Analysis (GSEA):

GSEA was used to assess the trend of distribution 
of genes in predefined gene sets in a table of genes 
ranked with phenotypic relevance to determine their 
contribution to the phenotype[21]. Enrichment analysis 
of all Differentially Expressed Genes (DEGs) in 
both high and low phenotypic relevance groups was 
performed using the R package clusterProfiler, and 
the parameters used in this GSEA were as follows; 
seeds of 2020, number of calculations of 10 000, the 
minimum number of genes contained in each gene 
set of 10 and maximum number of genes contained 
in each gene set of 500, and p-value correction 
method of Benjamini-Hochberg (BH). The c2.cp.
v7.2.symbols.gmt gene set was obtained from the 
Molecular Signatures Database (MSigDB) for 
GSEA analysis[22,23], and the screening standards 
for significant enrichment were p<0.05 and False 
Discovery Rate (FDR) value (q<0.05).

Assessment of immune infiltration status:

We assessed the immune infiltration status of HF 
samples using single sample GSEA (ssGSEA)[24]. 
The abundance of 28 TIICs (activated B cells (Ba), 
activated Clusters of Differentiation (CD)-4+ T 
cells (CD4+ Ta), activated CD8+ T cells (CD8+ Ta), 
activated Dendritic Cells (DCa), CD56bright Natural 
Killer cells (CD56+ NK), CD56dim NK cells (CD56− 
NK), central memory CD4+ T cells (CD4+ Tcm), 
central memory CD8+ T cells (CD8+ Tcm), effector 
memory CD4+ T cells (CD4+ Tem), effector memory 
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univariate and multivariate Cox analysis were based 
on the survival R package, and all statistical p values 
were two-sided, with p<0.05 considered statistically 
significant.

RESULTS AND DISCUSSION
We observed autophagy-related transcriptional 
changes between healthy controls and DCM 
samples. We first extracted the expression of 222 
autophagy genes in the merged cohort, and we 
found a total of 187 autophagy genes expressed in 
the merged cohort (fig. 1). The acquired autophagy 
genes were subjected to differential analysis and 43 
DEGs were obtained, and their expression heat map 
(fig. 1A) and volcano map (fig. 1B) were plotted for 
genes with significant expression differences. The 
PPI showed how these 43 autophagy genes interact 
with each other and we found that the human kinase 
Ribosomal Protein S6 Kinase Beta-1 (RPS6KB1) is 
at the center of the network (fig. 1C). The correlation 
among differentially expressed autophagy genes 
within the HF group has been shown and it can be 
found that ATF4 and Cyclin-Dependent Kinase 
Inhibitor (CDKN1A) have a significant negative 
correlation with other genes (R<0, p<0.05) (fig. 1D). 
The box plot visualizes the differential expression 
of autophagy genes in the normal group and before 
HF, it was found that there were 43 differentially 
expressed autophagy genes (p<0.05), among which 
7 were upregulated and 36 were downregulated (fig. 
1E).

To identify distinct pathways connecting autophagy 
and HF. The autophagy differential genes in GO 
and KEGG enrichment analysis has been presented 
in the context (fig. 2). The autophagy differential 
genes were mainly enriched in cellular response 
to external stimulus, cellular response to nutrient 
levels, ubiquitin-like protein ligase binding and 
other pathways in GO analysis (fig. 2A); autophagy 
differential genes were mainly enriched in lipid and 
atherosclerosis, Phosphoinositide 3-Kinase (PI3K)/
Protein Kinase B (AKT) signaling pathway, apoptosis, 
and other pathways (fig. 2B). The exploration of 
the roles played by differential genes can provide 
valuable insights for subsequent studies related to 
HF. Genes identified in single-cell transcriptome 
analyses, such as ATF4, may also be implicated in 
these pathways.

Lasso-based regression and SVM models have 
demonstrated greater accuracy and utility in 
predicting the relationship between autophagy-

CD8+ T cells (CD8+ Tem), eosinophils, Gamma Delta 
T cells (γδT), immature B cells (Bi), immature DC 
(iDC), mast cells, Myeloid-Derived Suppressor Cells 
(MDSC), memory B cells (Bm), monocytes, NK 
cells, NK-T, neutrophils, plasmacytoid DC (pDC), 
macrophages, regulatory T cells (Treg), follicular 
helper T cells (fhT), type-1 T helper cells (Th1), 
type-17 T helper cells (Th17), and type-2 T helper 
cells (Th2)) in a single sample of the merged cohort 
was predicted using the Gene Set Variation Analysis 
(GSVA) (R package)[25].

Expression of hub autophagy differential genes on 
scRNA-seq data:

We used the Seurat R package to import a single-
cell dataset of HF, DCM samples and create the 
Seurat objects for this analysis[26]. We filtered for 
low-quality cells with gene counts <200 or >3000. 
The proportion of mitochondrial genes to all 
genetic material may indicate whether a cell is in 
homeostasis. We generally consider that when a cell 
has a higher proportion of mitochondrial genes than 
all genes, it may be in a state of stress. Therefore, we 
filtered cells with >10 % mitochondrial genes. After 
the above steps, we obtained 3555 cells.
The data were normalized using log normalize. After 
controlling the relationship between mean expression 
and dispersion, highly variable genes were identified 
in single cells. We then decentered all genes and 
used Principal Component Analysis (PCA) to cluster 
all cells, visualized the obtained cell subgroups 
using T-distributed Stochastic Neighbor Embedding 
(TSNE)[27], and used the human primary cell atlas 
dataset from single R to identify the cell type of 
each cluster[26,28]. The expression of hub autophagy 
differential genes was also assessed in each of the 
identified cell subgroups.

Statistical analysis:

All data calculations and statistical analyses were 
performed using R programming (https://www.r-
projec t.org/, version 4.2.1). Comparisons between 
two groups were performed by the Wilcoxon rank 
sum test, while comparisons between three or more 
groups were performed by the Kruskal-Wallis test. 
The correlation was performed by the Spearman. The 
survival package of R was used for survival analysis, 
the Kaplan-Meier survival curve was used to show 
survival differences, and the log-rank test was used 
to assess the significance of the difference in survival 
time between the two groups of patients. Both 
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Fig. 2: GO and KEGG enrichment analysis based on autophagy differential genes, (A): GO enrichment analysis and (B): KEGG enrichment 
analysis 

Kinase 1 (MAPK1), EIF4G1, Myelocytomatosis 
Oncogene (MYC), ATF6, CASP8 and FADD 
Like Apoptosis Regulator (CFLAR), EIF4EBP1, 
TNFSF10, RPS6KB1, HSPA5, RAF1, CASP1 
(fig. 3B); then we took the intersection of the two 
identified genes and screened 9 hub autophagy genes 
with HF; ATF4, CDKN1A, MAP1LC3B, EIF4EBP1, 
TNFSF10, RPS6KB1, HSPA5, RAF1, and CASP1 
(fig. 3C). Finally, we used ROC to show the ability 
of these 9 genes for differentiating normal from HF 
patients (fig. 3D-fig. 3L). The expression of these 
nine autophagy-related genes within HF cell subsets 
will undergo verification through single-cell assays. 
Importantly, certain genes from this set may serve as 
potential therapeutic targets, thereby facilitating the 
exploration of the underlying mechanisms. 

related genes and HF patients. 15 disease feature 
genes were identified by Lasso; ATF4, CDKN1A, 
MAP1LC3B, Eukaryotic Translation Initiation 
Factor 4E Binding Protein 1 (EIF4EBP1), SH3 
domain containing GRB2 like, endophilin B1 
(SH3GLB1), KIAA0226, TNF superfamily member 
10 (TNFSF10), RAB5A, RPS6KB1, PIK3R4, Heat 
shock protein family (Hsp70) A member 5 (HspA5), 
RELA, RAF1, Caspase 1 (CASP1), C-X3-C Motif 
Chemokine Ligand 1 (CX3CL1) (fig. 3A); 19 
disease feature genes were identified by SVM; BAG 
Cochaperone 3 (BAG3), Proliferation and Apoptosis 
Adaptor Protein 15 (PEA15), ATF4, CDKN1A, 
MAP1LC3B, BCL2L1, EIF2S1, Niemann-Pick 
Disease C1 (NPC1), Mitogen-Activated Protein 

Fig. 1: Transcriptional characterization of autophagy genes in the normal and heart failure group, (A): Heat map; (B): Volcano map; (C): PPI 
network of autophagy differential genes; (D): Heat map of correlation of autophagy genes in the heart failure group and (E): Box plot of autophagy 
differential genes 
Note: (  ): Healthy and (  ): Heart  failure
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Fig. 3: Screening of feature autophagy genes in the heart failure group based on Lasso regression and SVM, (A): Lasso analysis for 43 autophagy  
differential genes; (B): SVM analysis for 43 autophagy differential genes; (C): Venn diagram shows 9 intersecting genes based on autophagy 
differential genes obtained by both methods and (D-L): ROC show the ability of disease feature genes (ATF4, CDKN1A, MAP1LC3B, EIF4EBP1, 
TNFSF10, RPS6KB1, HSPA5, RAF1, CASP1) for differentiating normal group from heart failure group

MSigDB. The results showed that the oxidative 
phosphorylation (fig. 5A), WNT signaling pathway 
(fig. 5B), and fatty acid metabolism (fig. 5C) pathway 
were significantly upregulated in subtype A, while the 
cytokine receptor interaction (fig. 5D), Extracellular 
Matrix (ECM) receptor interaction (fig. 5E), and 
primary immunodeficiency (fig. 5F) pathways were 
significantly upregulated in subtype B. Metabolism-
related signaling pathways predominantly exhibit 
associations with subtype A HF, whereas subtype 
B HF is primarily linked to cell-cell interaction 
signaling pathways. This observation posits that 
distinct pathogenic mechanisms may underlie the 
two divergent HF subtypes.

The immune infiltration status of HF disease samples 
was assessed using the ssGSEA. The results showed 
that most immune cells were significantly higher 

We performed unsupervised clustering analysis on 
HF samples based on the Hub autophagy gene, and 
the distribution of samples (fig. 4A). PCA analysis 
shows the distribution of each sample in the two-
dimensional plane when they are divided into two 
types, and it can be found that the two types of patient 
samples are clearly distinguished in the PCA (fig. 
4B). All HF samples can be well distinguished when 
they are divided into two types, with two types being 
the ideal and reasonable classification (fig. 4C-fig. 
4E). By amalgamating data from diverse sources, 
we achieved more reasonable disease classification 
outcomes pertinent to HF and autophagy.

We used the GSEA to assess the feature pathways 
in the identified HF disease subtype A and subtype 
B in HF samples from the merged cohort based 
on the c2.cp.v7.2.symbols.gmt gene set from the 
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in subtype A than in subtype B, such as activated 
B cell, activated CD4 T cell, activated CD8 T cell, 
and immature B cell; only immature dendritic cell, 
plasmacytoid dendritic cell, and Th2 cell were highly 
expressed in subtype B group (fig. 6A). Next, we 
performed correlation analysis of hub autophagy 
differential genes with immune infiltration score, and 
the results showed that ATF4, CDKN1A, EIF4EBP1, 
and CASP1 had a significant positive correlation 
with the identified immune infiltration cells, while 
MAP1LC3B, RAF1 showed significant negative 
correlation with the identified immune infiltration 
cells (fig. 6B). Immunoinfiltration analysis offers 
insights into the immune cell composition within HF, 
elucidating pivotal immune cell types influencing its 
progression. Integrating autophagy-related genes 
with immune cells facilitates a more comprehensive 
understanding of autophagy’s role in HF. Autophagy-
related genes could potentially influence the prognosis 
of HF by modulating immune-related cells.

In this study, we performed scRNA-seq on samples 
from DCM cases, resulting in a total of 8211 cells after 
filtering and the removal of batch effects. Following 
data normalization, the top 3000 genes were selected 

for PCA dimensionality reduction. Subsequently, 
the normalized data underwent clustering of cells 
exhibiting analogous gene expression profiles, 
utilizing the first 50 principal components. T-SNE 
dimensionality reduction was used to visualize 
13 independent clusters. We employed the human 
primary cell atlas data dataset within single to classify 
the cell types present in each cluster, resulting in the 
identification of 12 distinct cell types (fig. 7A).

Next, the expression of hub autophagy genes in 
cell subgroups was visualized using heat maps 
with violin plots. The results showed that ATF4 
was highly expressed in intermediate monocytes 
and plasma blasts; CDKN1A was not found to be 
expressed in the identified cell groups; MAP1LC3B 
was highly expressed in NK cells, plasma blasts, 
switched memory B cells, Th17 cells, and Vd2 gd 
T cells; EIF4EBP1 was expressed in intermediate 
monocytes; TNFSF10 was expressed in intermediate 
monocytes, Th17 cells and Th2 cells; RPS6KN1 was 
not found to be expressed in the identified cell groups; 
HSPA5 was highly expressed in plasma blasts, Th17 
cells and Vd2 gd T cells; RAF1 was expressed in 
plasma blasts; CASP1 was expressed in intermediate 
monocytes and Th17 cells (fig. 7B-fig. 7K).

Fig. 4: Identification of heart failure disease subtypes by unsupervised clustering, (A): Unsupervised clustering divides all heart failure samples into 
two types; (B): Distribution of all heart failure samples by PCA in the two-dimensional plane and (C-E): Rationality of the two types of heart failure 
samples identified by unsupervised consensus clustering analysis based on the expression of Hub autophagy differential genes
Note: (A) (  ): 1 and (  ): 2; (B) (  ): A; (  ): B and (C) (  ): 2; (  ): 3; (  ): 4; (  ): 5; (  ): 6; (  ): 7; (  ): 8 and (  ): 9
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Fig. 5: Assessment of specific pathways in heart failure disease subtypes by GSEA, (A): Oxidative phosphorylation; (B): WNT signaling pathway; 
(C): Fatty acid metabolism; (D): Cytokine receptor interaction; (E): ECM receptor interaction and (F): Primary immunodeficiency

Fig. 6: Immune infiltration analysis of heart failure samples in the merged cohort under the ssGSEA, (A): Box plot shows differential immune 
infiltration cells among heart failure subtypes and (B): Correlation plot of hub autophagy genes and immune cells
Note: *p< 0.05; **p<0.01 and ***p<0.001, (  ): Subtype A and (  ): Subtype B
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Fig. 7: Expression of hub autophagy genes in the single cell transcriptome, (A): TSNE visualizes cell subgroups of the single cell transcriptome; (B): 
Heat map of hub autophagy genes with expression in cell subgroups; (C): Violin plots of expression of hub autophagy genes ATF4; (D): CDKN1A; 
(E): MAP1LC3B; (F): EIF4EBP1; (G): TNFSF10; (H): RPS6KB1; (I): HSPA5; (J): RAF1 and (K): CASP1 in cell subgroups
Note: (  ): Central memory CD8 T cells; (  ): Intermediate monocytes; (  ): Naive B cells; (  ): Naive CD4 T cells; (  ): Naive CD8 T cells;  
(  ): NK cells; (  ): Non-Vd2 gd T cells; (  ): Plasma blasts; (  ): Switched memory B cells; (  ): Th17 cells; (  ): Th2 cells and (  ): 
Vd2 gd T cells
In summary, we have indicated the expression 
patterns of differentially expressed autophagy-related 
genes within distinct cell populations associated with 
HF at the single-cell level. 

HF is a serious and terminal stage resulting from 
a spectrum of heart diseases; it is characterized 
by significant morbidity and mortality rates. 
The condition can induce fatigue, fluid overload 
(marked by occurrences like pulmonary edema or 
ankle edema), and lead to structural and functional 
abnormalities within the heart[2]. DCM is the 2nd most 
common cause of HF (after coronary artery disease), 
accounting for approximately 36 % of all HF cases, 
and has an estimated prevalence of >0.4 % in the 
general population[29]. However, there is no specific 
target and therapeutic mechanism for addressing this 
direction of the disease, and drug development is 
hampered, at least in part, by the lack of consensus 
on appropriate standards for HF. 

Autophagy, which is the self-eating activity involved 
in the maintenance of cellular homeostasis, is 
currently a therapeutic target in several diseases, 
including HF[30]. The present study has provided 
evidence regarding the importance of autophagy 
in the failing hearts of patients with DCM. Of 
note, the quantification of autophagy vacuoles and 
the expression levels of cathepsin D emerged as 
independent predictors of Left Ventricular Reverse 
Remodeling (LVRR) in HF patients. These findings 
strongly advocate for the consideration of autophagy 
as a promising therapeutic target in the management 
of HF among patients with DCM. Leveraging data 
from the GEO database, we conducted an analysis 
to discern the transcriptional signature of autophagy 
genes in both the normal group and HF groups. 
Remarkably, RPS6KB1 emerged as a pivotal player 
in the interaction of autophagy genes, while ATF4 and 
CDKN1A exhibited significant negative correlations 



www.ijpsonline.com

Special Issue 2, 2024Indian Journal of Pharmaceutical Sciences131

with several other genes. To gain further insights 
into the functional implications of differentially 
expressed autophagy genes, we performed GO and 
KEGG enrichment analysis. These analysis allowed 
us to predict the potential functions and pathways 
associated with the identified genes, indicating their 
roles in the context of HF and autophagy regulation.
Autophagy has been extensively studied as a 
foundation for understanding HF in various 
articles[5,31]. However, investigations from the 
standpoint of scRNA-seq analyses have been lacking, 
which has resulted in research content that is limited 
in scope and lacks a comprehensive systematic 
approach. Therefore, our study is specifically 
oriented towards filling this gap by concentrating on 
the collaborative insights derived from scRNA-seq 
analysis. The utility of scRNA-seq helps us to better 
understand HF and may bring promising prospects 
for clinical diagnosis and therapy. A growing body of 
studies has identified that scRNA-seq can be utilized 
to explore genetic alterations in HF. In this study, 
we performed a comprehensive analysis of single-
cell genome datasets sourced from patients with 
HF that are available in the GEO database, thereby 
elucidating distinct cell subsets and their expression 
patterns of autophagy-related genes in the context 
of HF. Notably, our correlation analysis between 
hub autophagy genes and immune infiltration scores 
revealed significant positive associations between 
ATF4, CDKN1A, EIF4EBP1, and CASP1 and the 
identified immune infiltrating cells. Conversely, 
MAP1LC3B and RAF1 exhibited clear negative 
correlations with certain immune cell populations.
The previously published literature has highlighted 
the significance of the interplay between autophagy 
and the immune system. Given this recognition, there 
is a need for further exploration into the intricate 
relationship between autophagy and immune 
cells[32]. Both autophagy and immune cells exhibit 
a notable association with subtype A HF, thereby 
potentially establishing a connection between 
autophagy and immune cells. This integrated 
approach not only augments our comprehensive 
understanding of autophagy’s contribution within the 
HF framework but also suggests a plausible scenario 
where autophagy-related genes could impact the 
prognosis of HF by influencing immune-related 
cells. Further investigation allowed us to identify 
specific cell types that showed elevated expression 
of these hub autophagy genes. We identified high 
expression of ATF4 in intermediate monocytes and 

plasma blasts. A previous study has demonstrated 
that ATF4 expression in cardiomyocytes confers 
protection against HF through its anti-oxidative 
stress properties[33]. The presence of ATF4 in non-
myocardial cells and its involvement in autophagy 
could potentially introduce a novel perspective on 
its impact on HF prognosis. We notably detected 
substantial MAP1LC3B expression in NK cells, 
plasma blasts, switched memory B cells, Th17 
cells, and Vd2 gd T cells. While prior research has 
elucidated its involvement in autophagy within renal 
cell carcinoma[34], its relevance to cardiovascular 
diseases remains unexplored. Therefore, the potential 
correlation between MAP1LC3B and autophagy 
in the context of HF holds promise for further 
investigation. The remaining autophagy-related hub 
genes identified through the single-cell method have 
not been previously linked to cardiovascular diseases. 
This study could potentially contribute new insights 
into the roles of these genes in HF. However, the 
absence of existing reports on these genes presents 
a challenge in further elucidating their underlying 
mechanisms.
In this study, we have observed significant 
transcriptional alterations between healthy 
controls and samples from individuals with DCM. 
Collectively, our findings point to a potential 
link between autophagy and HF within non-
cardiomyocyte populations using single-cell 
methodologies. These investigations also offer a 
foundation for delving into the intricate interplay 
between autophagy and HF. However, it is important 
to acknowledge the presence of several limitations 
in this study that warrant careful consideration. In 
our exploration of autophagy-related genes through 
single-cell strategies, it is noteworthy that the HF 
data exclusively originated from the GEO database. 
The augmentation of our finding’s robustness 
and applicability could be achieved through the 
integration of data from additional sources and 
experimental validations. Furthermore, considering 
the retrospective nature of this study, prospective 
investigations and experiments are imperative to 
validate the stability and precision of the identified 
gene signature in future clinical scenarios. While 
this study indicated the possible correlation between 
autophagy-related genes and HF, it is essential to 
delve into the underlying molecular mechanisms. 
A comprehensive exploration of the regulatory 
pathways and interactions involving these genes 
would provide a profound comprehension of their 
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roles in the pathogenesis of HF. This, in turn, could 
uncover novel therapeutic targets, addressing the 
complexities of this multifaceted cardiovascular 
disorder.

We conducted an investigation into autophagy-
related genes using bioinformatics analysis 
to construct and validate the transcriptional 
characteristics of autophagy genes in HF. 
Furthermore, our study identified nine hub autophagy-
related genes associated with HF occurrence. We 
also detected the expression of these genes in cell 
subsets using single-cell strategies for prognostic 
recognition in HF and their potential immunotherapy 
response. For future research, it is significant to delve 
deeper into the underlying mechanisms through 
which the nine hub genes influence the immune 
microenvironment in HF. Such investigations will 
serve as a fundamental basis for the development 
of potential immunotherapeutic strategies aimed at 
effectively managing HF effectively.
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