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Diabetes is one of the major non-communicable and 
life-threatening diseases with an estimated affected 
population of 415 million worldwide in 2015 and 
expected increase to 642 million by 2040[1]. Type-2 
diabetes mellitus (T2DM), mainly characterized by 
insulin resistance and insulin deficiency, is prevalent 
among the two general forms of diabetes mellitus 
and accounts for almost 90 % of diabetic population 
worldwide. T2DM treatment is basically focused 
towards lowering and maintaining the level of 
glycosylated haemoglobin (HbA1c) below 7 %, thereby 
preventing the risk of micro and macro-vascular 
complications associated with the disease. The classical 
pharmacotherapy for T2DM includes sulfonylureas, 
meglitinides, thiazolidinediones, biguanides, and 
α-glucosidase inhibitors. The concerns with their long 
term use are major side effects such as weight gain and 
incidences of unpredictable hypoglycaemia. Therefore, 

newer approaches towards T2DM therapy are being 
developed based on better understanding of the 
insulin signalling pathway as well as other regulators 
of insulin release and insulin action[2]. Among these 
newer agents, dipeptidyl peptidase-IV (DPP4, DPP-IV, 
DPIV, CD26, EC 3.4.14.5) inhibitors have been widely 
investigated and were first introduced in 2006 with the 
approval of sitagliptin. Some of the other drugs being 
used as DPP-IV inhibitors are linagliptin, vildagliptin, 
saxagliptin and alogliptin[3]. Inhibition of DPP-IV 
results in increased levels of glucagon like peptide-1 
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(GLP-1), which is one of the two incretin hormones, the 
other hormone being glucose dependent insulinotropic 
polypeptide (GIP). Produced in the gut in response 
to nutrient intake, these hormones exert their action 
on pancreatic β-cells improving their function and 
efficiency, thus having an indirect positive effect on 
insulin secretion. Approximately 60 % of postprandial 
insulin release is promoted by these two hormones[4]. 
GLP-1 also increases β cells responsiveness towards 
glucose, inhibits gastric emptying and reduces appetite, 
hence contributes towards improved glycaemic 
control[5]. DPP-IV, a serine protease, specifically 
cleaves N-terminal dipeptides from substrates 
containing proline and to some extent alanine, at the 
penultimate position as in GLP-1 is responsible for 
very short half-life of the latter (only 1-2 min) and GIP 
(7 min)[6,7]. A schematic diagram of action of DPP-IV 
and its inhibitors is shown in fig. 1.

DPP-IV inhibitors belonging to diverse chemical 
classes can be broadly classified into peptidomimetics 
(agents mimicking the penultimate dipeptide structure 
of DPP-IV substrates) and non-peptidomimetics. 
Peptidomimetic inhibitors can be sub-classified into 
glycine based (α series) and β-alanine based (β series). 
In α series, substituted pyrrolidines or thiazolidines 
are linked to α-amino acid while in β series, β-amino 
amide moiety is linked to the proline nitrogen. 

The quantitative structure activity relationship (QSAR) 
study correlates structural features of compounds with 
their biological activity/toxicity/other physicochemical 
properties through the utilization of several 
descriptors[8]. Descriptors are numerical representations 
of molecular properties defining electronic, topological, 
physicochemical and special features of the molecules. 
Similar molecules can exhibit large differences in 
their biological activities due to minute differences in 
their structures. QSAR focuses on these variations in 

biological activity with changes in molecular structure 
in a quantitative fashion[9]. The 3D descriptors include 
steric, electrostatic and hydrophobic features of 
molecules and their correlation with biological activity 
is established for derivation of 3D-QSAR. Among 
various 3D-QSAR methods are comparative molecular 
field analysis (CoMFA), comparative molecular 
similarity indices analysis (CoMSIA), k-nearest 
neighbour molecular field analysis (kNN-MFA), self-
organizing molecular field analysis (SoMFA)[10].

In contrast to QSAR, which requires the biological 
activity of a series of ligands, molecular docking can 
be utilized provided the structure of the receptor is 
known. The reported ligands as well as newly designed 
compounds can be docked into the active site of the 
receptor to find out the structural requirements for their 
biological activity. Both ligand based and structure 
based approaches can be utilized for DPP-IV inhibitor 
design as high resolution X-ray crystal structures of 
the enzyme are available. In the present investigation 
an attempt has been made to apply both ligand and 
structure based approaches for identification of 
structural requirements for compounds with better 
DPP-IV inhibitory potential.

MATERIALS AND METHODS

Biological activity data:

Nitta et al. reported the DPP-IV inhibitory activity 
of 3-amino-N-substituted-4-(substituted phenyl) 
butanamides in two communications[11,12] calculated as 
concentration required to inhibit 50 % (IC50) of DPP-IV 
derived from human colonic carcinoma cells (Caco-2). 
After removing two duplicates (17, 28) from the series, 
a dataset of 48 molecules was used in the present work 
(Table 1, fig. 2). The IC50 of all the compounds was 
converted to its negative logarithm spanning a range 
of ~4 log units. 

Molecular modelling:

All the studies were performed on HCL computer 
with genuine Intel Pentium Dual Core Processor and 
Windows XP operating system. All the molecules 
were drawn using ChemSketch (version 12.01)[13] and 
converted to 3D structures using VLife Molecular 
Design Suite (MDS)[14] for further analysis. Geometry 
optimization of molecular structures was performed 
using Merck Molecular Force Field (MMFF) using 
Gasteiger charge with maximum number of cycles as  
10 000, convergence criteria (root mean square 
gradient) as 0.01 and constant in dielectric properties 

Fig. 1: Actions of DPP-IV and its inhibitors
a: Inhibit; b: restore the activity (↑t1/2); c: cleaves, (responsible 
for very short t1/2)
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TABLE 1: STRUCTURES AND BIOLOGICAL ACTIVITIES OF 3-AMINO-N-SUBSTITUTED-4-(SUBSTITUTED 
PHENYL) BUTANAMIDES
Compound Y R1 R2 R3 IC50 (nM) pIC50 (moles)#

12a NBn H H Me 7800 5.11
12b NBn H H Ph 1000 6.00
12c NBn H H Bn 2200 5.66
12d NMe H H Ph 870 6.06
12e O H H Ph 2500 5.60
12f S H H Ph 3300 5.48
12g SO2 H H Ph 570 6.24
12h SO2 H H 2-pyridyl 470 6.33
12i SO2 H H 2-thiazolyl 190 6.72
12j SO2 H H 2- benzthiazolyl 64 7.19
12k SO2 F F H 13 7.89
12l SO2 H H 6-OMe 12 7.92
12m SO2 F F 6-OMe 2.7 8.57
12n SO2 F F 5-OMe 3.3 8.48
12o SO2 H H 4-OMe 270 6.57
12p SO2 H H 6-Cl 35 7.46
12q SO2 H H 4-Cl 130 6.89
12r SO2 H H 6-Me 70 7.15
12s SO2 H H 4-Me 350 6.46
12t SO2 F F 6-OCH2CH2OMe 1.0 9.00
12u O F F 6-OCH2CH2OMe 3.6 8.44
12v SO2 Cl H 6-OCH2CH2OMe 0.64 9.19
12w O Cl H 6-OCH2CH2OMe 1.9 8.72
12x SO2 F F 6-OCH2CH2-morpholino 0.79 9.10

18 SO2 F F H 0.083 7.08
19 SO2 F F 1-imidazolyl 0.012 7.92
20 SO2 H H 4-pyridyl 0.49 6.31
21 SO2 H H 2-thiazolyl 0.39 6.41
22 SO2 H H 5-thiazolyl 0.041 7.39
23 SO2 F F 5-thiazolyl 0.0078 8.11
24 SO2 H H 4-pyrazolyl 0.33 6.48
25 SO2 H H 1-methyl-5-imidazolyl 0.084 7.08
26 SO2 H H 2-methyl-5-thiazolyl 0.28 6.55
27 SO2 H H 2-piperidinyl-5-thiazolyl 0.25 6.6
29 SO2 H H 4-phenylthiazol-2-yl 0.06 7.22
30 SO2 F F 4-phenylthiazol-2-yl 0.016 7.8
31 SO2 H H 4-(3-methoxyphenyl)thiazol-2-yl 0.024 7.62
32 SO2 H H 4-(4-methoxyphenyl)thiazol-2-yl 0.67 6.17
33 SO2 F F 4-(2-methoxyphenyl)thiazol-2-yl 0.059 7.23
34 SO2 F F 4-(4-chlorophenyl)thiazol-2-yl 1.1 5.96
35 SO2 F F 4-(4-(trifluoromethyl) phenyl)thiazol-2-yl 0.11 6.96
36 SO2 F F 4-(3-(trifluoromethyl) phenyl)thiazol-2-yl 0.19 6.72
37 SO2 H H 4-(4-fluorophenyl)thiazol-2-yl 0.1 7
38 SO2 H H 5-methyl-4-phenylthiazol-2-yl 0.072 7.14
39 SO2 F F 5-phenyl-1,3,4-oxadiazol-2-yl 0.094 7.03
40 SO2 F F 5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl 0.055 7.26
41 SO2 F F 5-(3-methoxyphenyl)-1,3,4-oxadiazol-2-yl 0.05 7.3
42 SO2 F F 1-methyl-4-phenyl-1H-imidazol-2-yl 0.16 6.8

apIC50=–log (1/IC50)
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(medium’s dielectric constant is 1 for in vacuo) as 1.0. 
For QSAR study electrostatic and steric energy cut-
offs were set to default values of 30.0 and 10.0 kcal/
mol, respectively.

3D-QSAR study:

The kNN and partial least squares regression (PLSR) 
methodologies were employed for 3D-QSAR study. 
The dataset was aligned by template based alignment 
method using most common feature present in all 
molecules as the template (fig. 3). Following molecular 
alignment, the molecular fields were computed on 
a grid of points in space around each molecule. This 
field provides a description of how each molecule will 
tend to bind in the active site. Descriptors representing 
steric, electrostatic and hydrophobic interaction 
energies were computed at lattice points using a methyl 
probe of charge +1. Descriptor non-redundancy was 

assured by removing variables having constant values. 
Genetic algorithm (GA) and simulated annealing (SA) 
were deployed for selection of appropriate descriptors 
from a pool of 6000 3D descriptors (2000 each for 
electrostatic, steric and hydrophobic fields).

Validation of 3D-QSAR models:

According to the guidelines laid by Organization for 
Economic Cooperation and Development (OECD) in 
2004, the validity of any QSAR model should be tested 
according to the following principles (1) a defined 
end point (2) an unambiguous algorithm (3) a defined 
domain of applicability (4) appropriate measures of 
goodness-of-fit, robustness and predictivity and (5) 
a mechanistic interpretation, if possible. Validation 
of QSAR models is thus of utmost importance since 
merely fitting the data does not substantiate good 
predictive ability as the former parameterizes the 

Fig. 2: Basic structures of the compounds used to develop QSAR
Series 1, comp. 12a-12j: Y=NBn, O, S, SO2; R1=R2=H; R3=Me, Ph, Bn, 2-pyridyl, 2-thiazolyl, 2-benzthiazolyl. Series 1, comp. 
12k-12x: Y=SO2; R1=H, F, Cl; R2=H, F; R3=6-OMe, 5-OMe, 4-OMe, 6-Cl, 4-Cl, 6-Me, 6-OCH2CH2Me, 6-OCH2CH2-morpholino. 
Series 2: R1=R2=H, F; R3=H, 1-imidazolyl, 4-pyridyl, 2-thiazolyl, 5-thiazolyl, 4-pyrazolyl, 1-methyl-5-imidazolyl, 2-methyl-
5-thiazolyl, 2-piperidinyl, 5-thiazolyl, 4-phenyl-thiazol-2-yl, 4-(3-methoxyphenyl)thiazol-2-yl, 4-(4-methoxyphenyl)thiazol-
2-yl, 4-(2-methoxyphenyl)thiazol-2-yl, 4-(4-trifluoromethyl) phenyl)thiazol-2-yl, 4-(3-trifluoromethyl)phenyl)thiazol-2-yl, 
4-(4-fluorophenyl)thiazol-2-yl, 5-methyl-4-phenylthiazol-2-yl, 5-phenyl-1,3,4-oxadiazol-2-yl
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statistical quality of the model. Therefore a reliable 
QSAR model should be able to withstand both internal 
and external validation. Internal validation ensures 
the predictability of the models for the compounds 
employed in model generation but the bigger challenge 
lies in the predictive ability of the model towards new 
compounds. For this purpose external validation must 
be applied. Nevertheless, internal validation is a good 
foundation for external validation of QSAR models. 

Metrics that can serve the above purpose can broadly 
be classified as r2 based metrics and error based metrics. 
Some examples of r2 based metrics for internal validation 
are leave-one-out (LOO) cross validation (LOO-q2), 
leave-many-out (LMO) cross validation (LMO-q2), 
bootstrapping (Boot-q2)[15], Trueq2[16], and the rm

2 metric 
for internal validation[17]. while for external validation 
predicted r2 (or q(F1)

2), q(F2)
2[18], q(F3)

2[19] Golbraikh and 
Tropsha’s criteria[20], rm(test)

2 and concordance correlation 
coefficient (CCC)[21]. The results of r2 based metrics 
are not only dependent on model based predictions but 
also on other factors like range as well as distribution 
of the response data around mean, thus making them 
insufficient for reliable validation. Further some models 
may be found predictive according to one criterion, but 
may not be acceptably predictive for other criteria. 
Thus the models were validated on the basis of more 
than one criterion and only those models considered 
predictive by all the used criteria are reported. On 
the other hand error based metrics may provide more 
direct information about the prediction errors since 
they do not compare the prediction errors with other 
aspects like performance of the mean. The two most 

commonly used error based metrics in QSAR literature 
are root mean square error (RMSE) and a similar 
criterion mean absolute error (MAE) that measure the 
discrepancies among the experimental values vs. the 
ones predicted by the model.

In the present communication we have emphasized 
on external validation of models developed from both 
kNN and PLSR approaches. The internal validation of 
present QSAR models was performed by calculation 
of LOO-q2. For internal and external validation of 
QSAR models, cross validated correlation coefficient 
(r2

cv or q2) and predictive correlation coefficient  
(pred_r2) parameters were used respectively. Both 
can be represented by Eqn. 1.: q2/pred_r2=1–∑(yi–
ŷi)

2/∑(yi–ȳi)
2, where, yi=observed activity, ŷi=predicted 

activity and ȳi=average activity. In Eqn. 1, in case of q2, 
all the variables belong to training set molecules while 
in the calculation of pred_r2, yi and ŷi belong to test set. 
The numerator is the residual sum of squares and the 
denominator is the total sum of squares.

External validation of QSAR models is a critical tool 
to appraise their predictive ability for compounds not 
employed during model development. For external 
validation the dataset was divided in training and 
test sets. Based on Y-response the compounds 
were arbitrarily divided into bins containing active 
(PIC50>8.00), moderately active (8<PIC50>6) and 
less active molecules (PIC50<6) and were assigned 
randomly to training and test set from all the groups. 
Both r2 based and error based metrics were employed 
for external validation of developed models. Pred_r2 

Fig. 3: Template and alignment of molecules
(a) Template used for alignment of molecules; (b) alignment of all the molecules over the template
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reflects the degree of correlation of observed and 
predicted activities. Different formulae for calculation 
of pred_r2 have been suggested by different research 
groups.

In Eqn. 1, pred_r2 is also known as q2
(F1). Another 

formula for calculating predictive correlation 
coefficient is given by Schuurmann et al. (q2

(F2))
[18]. The 

only difference in the formulae for q2
(F1) and q2

(F2) is that 
whereas in q2

(F1) the ȳ term is the training set mean, in 
q2

(F2) it is the test set mean. A parameter that accounts 
for the number of training and test set compounds was 
proposed and termed q2

(F3). Although like pred_r2, it is 
also sensitive to training set selection. For calculation 
of q2

(F3) the residual sum of squares in Eqn. 1 is divided 
by number of test set compounds while the total sum of 
squares is divided by training set compounds.

Another simpler criterion that can correlate with 
the error measures such as RMSE, CCC (ρ ̅c) was 
used to ascertain the model reliability Eqn. 2.,  
ρ ̅c=2∑n

i=1(xobs(test)–x ̅obs(test))(ypred(test)–ȳpred(test))/∑n
i=1(xobs(test)– 

x ̅obs(test))2+∑n
i=1(ypred(test)–ȳpred(test))2 +n(x o̅bs(test))–(ȳpred(test)).

In the above equation, xobs(test) and ypred(test) correspond 
to the observed and predicted values of the test  
compounds, n is the number of compounds, and  
x ̅obs(test) and ȳpred(test) correspond to the averages of the 
observed and predicted values, respectively, for the test 
compounds. It was demonstrated that as data scattering 
increases the CCC trend decreases, while RMSEP 
increases.

Among the two error based metrics, MAE is able to 
determine the central tendency i.e. average prediction 
error along with the error dispersion in a more 
straightforward manner as it does not penalize the 
difference between observed and predicted activities 
as in RMSE Eqn. 3., MAE=1/n×∑|yobs–ypred|.

Therefore, Roy et al.[22] have considered MAE to be 
a better index of errors in the context of predictive 
modelling studies. Thus according to the method 
proposed by Roy et al.[22] the models were analysed for 
their predictive ability based on MAE based criteria. 
The robustness of the models was confirmed by 
Y-randomization. For this purpose response variables 
in the data set were scrambled and random models 
were generated with this data. Probability (α) and z 
score of significance of randomization were calculated 
to ascertain that there is no chance correlation. 

Even after successful external validation of the 
QSAR models, they cannot be employed to just any 

of the compounds in the chemical universe. Therefore 
reliability for confident prediction of new compounds 
is based on the model’s applicability domain (AD). The 
AD is a theoretical region in chemical space, defined 
by the model descriptors and modelled response and 
thus by the nature of the chemicals in the training set, 
as represented in each model by specific molecular 
descriptors[23]. Only the compounds that fall within 
the AD of the models can be confidently predicted. 
AD of a model can be determined by various methods, 
which may vary among datasets and thus none of 
them can be considered universal. Considering the 
need of sophisticated software and calculation of 
different parameters required for above methods, 
a simple method for determination of AD through 
standardization approach was reported recently[24]. 
According to this approach all the descriptors of the 
model are standardized using Eqn. 4., Ski=|Xki –X i̅|/
σXi, where, k=1, 2, 3…nComp (nComp = total number 
of compounds), i=1, 2, 3…nDes (nDes=total number 
of descriptors), Ski=standardized descriptor i for 
compound k (from the training or test set), Xki=original 
descriptor i for compound k (from the training or test 
set) Xi=mean value of the descriptor Xi for the training 
set compounds only, σXi=standard deviation of the 
descriptor Xi for the training set compounds only. This 
is followed by computing the maximum Si(k) value  
([Si]max(k)) for the compound k. If [Si]max(k) is lower than 
or equal to 3, then the compound is not an X-outlier (if 
in the training set) or is within AD (if in the test set). 
If [Si]max(k) is above 3, then one should compute [Si]
min(k). If [Si]min(k)>3, then the compound is an X-outlier 
(if in the training set) or is not within AD (if in the 
test set). If [Si]max(k)>3 and [Si]min(k)<3, then one should 
compute Snew(k) from Eqn. 5: Snew(k)=Sk̅+1.28×σSk

, where, 
Snew(k)=Snew value for the compound k, Sk̅=mean of Si(k) 
values of the compound k, σSk

=standard deviation of 
Si(k) values of the compound k. If the calculated Snew(k) 
is lower than or equal to 3, then the compound is not 
an X-outlier (if in the training set) or is within AD (if 
in the test set).

Molecular docking study:

Molecular docking studies were carried out using 
python prescription (PyRx)[25] which uses AutoDock 
Vina[26] as docking tool. The results of docking were 
visualized using PyMol[27]. The crystal structure of 
DPP-IV in complex with a peptidomimetic inhibitor 
sitagliptin was retrieved from protein data bank 
(PDBID:1X70). Protein preparation steps prior to 
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docking involved removal of crystallographic water 
molecules, addition of polar hydrogens, inspection 
for any missing atoms, assigning kollman charges and 
removal of all crystallographic ligands. Nine docked 
poses were generated for each ligand within the grid of 
31×32×32Å around the active site (covering residues 
within 4 Å of the crystallographic ligand). The docking 
protocol was validated by reproducing the binding 
interactions of crystallographic ligand.

RESULTS AND DISCUSSION

A series of 3-amino-N-substituted-4-(substituted 
phenyl) butanamides was subjected to kNN and 
PLSR based 3D-QSAR approaches and molecular 
docking for exploration of structural requirements in 
order to achieve better DPP-IV inhibitory activity. 
The predictor variables for 3D-QSAR were selected 
using GA and SA. Several models were developed by 
various combinations of training and test sets and the 
corresponding most significant kNN and PLSR models 
are discussed. The models were thoroughly checked 
for their internal and external predictivity through 
both regression and error based methods. Molecular 
docking was performed using a grid covering residues 
within 4Å of the bound ligand. A discussion of results 
of both 3D-QSAR and docking study is as follows: The 
results of kNN-QSAR model are kNN=2, Ntraining=36, 
Ntest=12, q2=0.6723, q2_se=0.5454, pred_r2=0.8254, 
pred_r2se=0.4489.

The variable selection method applied for generation 
of this model was SA. It encompasses contribution 
from two electrostatic and one hydrophobic field 
points (fig. 4a). According to this model the positive 

range of hydrophobicity at 1449 shows that increase in 
hydrophobicity around this point will favour the DPP-
IV inhibitory activity. This is evident from compounds 
12t-12x, which show their activities on the higher 
side of the dataset. Electrostatic field at lattice point 
486 has a positive range, which indicates the need 
of less electronegative group around this point (c.f. 
compounds 29-38) whereas at 1171 it has a negative 
range, which indicates the need of more electronegative 
functional group at or around this point. E 1171 is 
situated in the vicinity of substituted butanamide group 
and is common for all the compounds. It can thus be 
presumed as a necessary structural feature for the 
biological activity of the dataset. 

The results of PLSR-QSAR model were 
pIC50=1.55806–6.7719H_1559+3.6231H_1461–
58.1791S_901, Ntraining=36, Ntest=12, r2=0.7597, r2_
se=0.4732, q2=0.6929, q2_se=0.5349, Pred_r2=0.7776, 
pred_r2se =0.5057.

Generated through GA variable selection this model 
involves contribution of two hydrophobic and one 
steric field points (fig. 4b). The negative coefficient of 
hydrophobic field at 1559 implies that less hydrophobic 
group will be favourable for better biological activity. 
This effect is apparent in compounds 12a, 12b and 12c, 
which have N-benzyl ring around this point. On the 
other side positive value of hydrophobic field at 1461 is 
favourable for biological activity as in compounds 12u, 
12v, 12w and 12x. Steric field at S_901 has a negative 
coefficient value indicating the negative contribution 
of steric bulk towards the biological activity. It follows 
that less bulky groups are favourable around this point. 
The descriptors and their ranges (for kNN-MFA) and 

Fig. 4: Contribution 3D plot for generated models
(a) Model 1 (b) model 2
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coefficients (for PLSR) are provided in Table 2.

Different parameters on which the models were 
evaluated internally and externally along with their 
acceptable values are presented in Table 3. The kNN-
MFA model has an internal (q2) and external (pred_r2) 
predictive ability of ~67 % and ~82 %, respectively 
while the best PLSR model shows ~70 % of internal 
and ~78 % of external predictivity. Fig. 5 represents 
a graph between the actual and predicted activities 
and Table 4 lists the actual and predicted values of 
the dataset compounds along with residuals. The 
contribution of the descriptors of PLSR model towards 
the activity is shown in fig. 6.

The values of r2 based coefficients for the models 
suggest that both survive the more stringent criteria for 
external validation. Therefore they can be expected to 

provide reliable predictions for unknown compounds. 
Robustness of both the models for experimental 
training and test sets was examined by comparing 
the model to those derived for random data sets (z 
scores) and the models were found to have better 
validation statistics than their random counterparts. 
The models were also evaluated on the basis of MAE 
based criteria. The MAE based criteria proposed by  
Roy et al.[22] implies that an error of 10 % of the 
training set range should be acceptable while an error 
value more than 20 % of the training set range should 
be a very high error. Although no suitable threshold 
can be determined for error based metrics unlike r2 
based criteria, mean ±3σ covers 99.7 % an area where 
most of the observations belong. Here σ is the standard 
deviation of the absolute error values for the test set 
data. Thus, for good predictions MAE≤0.1×training 

Parameters kNN-MFA PLSR
Training set size (n) 36 36
Test set size 12 12
K nearest neighbourk 2 -
Degree of freedom 32 34

Descriptor rangek/
coefficientP

E_486
H_1449
E_1171

0.0806610.140629
0.826020.832793

-0.103295-0.063776

H_1559
H_1461
S_901

-6.7719
3.6231

-58.1791

TABLE 2: THE MOST OPTIMIZED STATISTICALLY SIGNIFICANT MODELS

kCalculated for kNN-MFA only; Pcalculated for PLSR only

Parameters kNN-MFA PLSR
r2P - 0.7597
q2 0.6723 0.6929
F-testP - 107.5078
r2_seP - 0.4732
q2_se 0.5454 0.5349
Pred_r2 0.8254 0.7776
Pred_ r2se 0.4489 0.5075

Z-Zcore
r2

q2

Pred_r2

-
3.2817
1.18

r2

q2

Pred_r2

8.63915
7.38326

2.95
Best rand r2P - 0.5347
Best rand q2 - 0.4362
Best rand pred_r2 - 0.4901
Alpha rand r2P - 0.00
Alpha rand q2 - 0.00
Alpha rand pred_r2 - 0.01
Q2F2 0.8252 0.7773
Q2F3 0.7907 0.64692
CCC 0.8948 0.8579

100 % data 95 % data# 100 % data 95 % data#

MAE 0.3580 0.3105 0.4025 0.3192
MAE+3×SD
(95% data) 0.8967 0.9505

TABLE 3: VALIDATION PARAMETERS FOR MODELS

PCalculated for PLSR only; #calculated by omitting 5 % high residual data points
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set range and MAE+3×σ≤0.2×training set range (Eqn. 
6) and for bad predictability MAE>0.15×training set 
range or MAE+3×σ≤0.2×training set range (Eqn. 
7). This implies that an MAE between 0.1 and 0.15 
and MAE±3σ between 0.2 and 0.25 may represent 
moderate predictivity of the models. This connotation 
provides a good criterion for model selection. Further, 
according to the proposed guideline for determination 
of quality of MAE based predictions, MAE was 
calculated for 95 % data points after omitting 5 % high 
residual data points in order to obviate the influence 

of any high prediction errors that may significantly 
obscure the quality of predictions for the whole data 
set. On the basis of the above MAE based norms; both 
the models are expected to perform moderately for new 
compounds.

The AD determined by standardization approach 
predicted 37 as outlier (training set) for kNN-MFA as 
its Snew(k) value is greater than the stipulated value of 
3. Similarly 12b is an outlier (training set) and 12c is 
outside AD of PLSR model (test set) on the basis of 
their Snew(k) values.
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Fig. 5: Comparison of actual and predicted activities of model 1 and model 2
Scatter plot of observed vs. predicted activities for (A) model 1 and (B) model 2; squares are training set, triangles are test set. (C) 
and (D) represent the Radar graph for comparison of actual and predicted activities of all the compounds for model 1 and model 2, 
respectively. Blue line is actual activity and red line is predicted activity
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Molecular docking studies were performed to explore 
binding orientation of compounds in the DPP-
IV active site. This was expected to allow for the 
deduction of prospective interactions of compounds 
with the active site amino acid residues and their 
correlation with biological activity. The active site 
of DPP-IV is composed of three major sub-sites S1, 
S2 and S2 extensive. The S1 pocket is very small and 
can accommodate only small substitutions or rings. 
Interactions with S2 involve formation of salt bridge 
with GLU205 and GLU206 while interactions with 
residues lining S2 extensive impart stability to the 
complex[28]. The compounds from active, moderately 
active and less active classes exhibited different binding 
patterns. Whereas the active compounds such as 12x 
and 12v occupied similar space as the crystallographic 
ligand (sitagliptin); the binding modes of compounds 
from moderately active and inactive classes were 
distinct from the latter. The superimposition of the 
docked crystallographic ligand with its experimental 
orientation is depicted in fig. 7.

Compound 12x exhibited the best value of binding 
energy amongst actives whereas compound 40 was 
at the top among moderately actives (binding energy 
lowest amongst the whole dataset), while 12b with 
value of –9.4 exhibited good binding affinity. However 
12v did not show a binding affinity as good as others 
amongst actives, it exhibited favourable interactions 
over other less active compounds. Thus the values of 
binding affinity vaguely correlated themselves with 
activity but binding poses of active molecules may 
advocate their discrimination from moderately active 
or inactive compounds. As evident from kNN-MFA the 
electrostatic field point at 1171 holds a negative range 
and is near the 3-amino butanamide moiety. Thus it 
may be involved in important interactions forming the 
salt bridge with side chain carboxyl oxygen of GLU205 

TABLE 4: OBSERVED AND PREDICTED ACTIVITIES 
OF STATISTICALLY SIGNIFICANT 3D-QSAR 
MODELS

Compound
PIC50

Actual
kNN-MFA PLSR

Predicted Residual Predicted Residual
12a 5.11 5.84 -0.73 5.23 -0.12
12b 6.00 6.24 -0.24 5.68 0.32
12c 5.66 6.03T -0.37T 5.52T 0.14T

12d 6.06 5.35 0.71 6.46 -0.40
12e 5.60 6.15 -0.55 6.32 -0.72
12f 5.48 6.03T -0.55T 6.12T -0.64T

12g 6.24 6.15 0.09 6.87 -0.63
12h 6.33 6.48T -0.15T 6.57T -0.24T

12i 6.72 5.92 0.80 6.31 0.41
12j 7.19 6.79 0.40 6.82 0.37
12k 7.89 7.71 0.18 7.26 0.63
12l 7.92 8.10 -0.18 7.89 0.03
12m 8.57 7.77 0.80 8.22 0.35
12n 8.48 7.60T 0.88T 7.80T 0.68T

12o 6.57 7.26 -0.69 7.18 -0.61
12p 7.46 7.38 0.08 7.24 0.22
12q 6.89 6.87 0.02 6.85 0.04
12r 7.15 6.87 0.28 7.26T -0.11T

12s 6.46 6.58 -0.12 6.93 -0.47
12t 9.00 8.82T 0.18T 8.81T 0.19T

12u 8.44 8.95 -0.51 8.64 -0.20
12v 9.19 8.58 0.61 8.51 0.68
12w 8.72 8.81 -0.09 8.49 0.23
12x 9.10 8.81 0.29 9.78 -0.68
18 7.08 6.36 0.72 7.10 -0.02
19 7.92 8.00T -0.08T 7.19 0.73
20 6.31 6.97 -0.66 6.83 -0.52
21 6.41 7.11 -0.70 6.74 -0.33
22 7.39 6.43 0.96 6.82 0.57
23 8.11 7.60 0.51 7.05T 1.06T

24 6.48 6.85 -0.37 6.91T -0.43T

25 7.08 6.94T 0.14T 6.96 0.12
26 6.55 6.85 -0.30 6.72 -0.17
27 6.60 7.14 -0.54 6.56 0.04
29 7.22 7.16 0.06 6.71 0.51
30 7.80 7.39 0.41 7.02 0.78
31 7.62 6.73 0.89 7.23T 0.39T

32 6.17 6.03T 0.14T 6.98 -0.81
33 7.23 7.25 -0.02 7.42 -0.19
34 5.96 6.81 -0.85 6.90 -0.94
35 6.96 6.55T 0.41T 7.07 -0.11
36 6.72 7.06T -0.34T 7.10T -0.38T

37 7.00 5.98 1.02 6.75 0.25
38 7.14 6.87 0.27 6.86 0.28
39 7.03 6.76 0.27 7.08 -0.05
40 7.26 7.59T -0.33T 7.04 0.22
41 7.30 6.85 0.45 7.20 0.10
42 6.80 7.51T -0.71T 7.25T -0.45T

T Test set compounds
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Fig. 6: Contribution plot for PLSR model
■ Percent contribution of the descriptor toward activity
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Fig. 7: Validation of docking protocol
Interactions of docked crystallographic ligand are analogous 
to those reported in the original publication; violet carbons: 
crystallographic pose, green carbons: docked pose

and GLU206. The electrostatic field at 486 is positive 
and the substituted phenyl rings of compounds 29-38 
flank around this point (R3) thus interactions between 
the side chains and polar amino acids of the active 
site may be probable. The binding energies of the 
representatives of active, moderately active and less 
active classes are shown in Table 5 and the interactions 
of compounds 12x and 12v with DPP-IV active site are 
presented in fig. 8.

The PLSR model portrays the involvement of one steric 
and two hydrophobic descriptors. The hydrophobic 
field point at 1317 has a negative coefficient and is 
located near R3 of 12a-12d which possess N-benzyl or 
N-methyl group which flank around this point. As can 
be seen in fig. 9, N-benzyl ring of 12b is occupying the 
S1 pocket making it difficult for the 3-amino group to 
form interactions in the S2 subsite. This may elucidate 
the low biological activity of related compounds. On 
the other hand H_1461 with its positive coefficient 
is in the vicinity of side chains of some of the highly 

active compounds (12t-12x), thus indicating the favour 
of hydrophobicity towards the biological activity. 
These side chains extend towards the farther end of the 
active site having fewer interactions. Thus the higher 
activity may be attributed to their ability to effectively 
penetrate the cell membrane. S_901 is located near the 
substituted phenyl ring proving the importance of steric 
contribution over its electrostatic and hydrophobic 
counterparts in the S1 pocket. With regard to the above 
discussion results of 3D-QSAR and molecular docking 
appear to be in agreement with each other.

DPP-IV plays a major role in the onset of T2DM. 
The DPP-IV inhibitory activities of diverse scaffolds 
have encouraged researchers around the globe to find 
new possibilities in the quest for effective diabetes 
management. The present study is an effort to 
establish 3D-QSAR on a series of substituted 3-amino-
butanamide derivatives for their DPP-IV inhibitory 
activity. Binding patterns of the dataset compounds 

Compound Binding affinity  
(kcal/mol) Polar Interactions

12v -8.7
ARG125, GLU205, 
GLU206, SER209, 
ARG356, ARG358

12x -9.8
ARG125, GLU205, 
SER209, ARG356, 

ARG358

40 -10.3 ARG125, GLU205, 
TYR547, SER630

12b -9.5 ARG125, TYR547

Crystallographic 
ligand (sitagliptin) -9.9 GLU205, GLU206, 

TYR662

TABLE 5: MOLECULAR DOCKING STUDIES OF 
SOME DATASET COMPOUNDS

Fig. 8: Interactions of compounds with active site residues
(A) 12v and (B) 12x 
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were determined through molecular docking studies. 
The most significant kNN-MFA and PLSR models 
exhibited ~82 % and ~78 % external predictability, 
respectively. Both the models withstand more stringent 
criteria for external validation such as q2

(F2), q
2
(F3), CCC 

and MAE based criteria and are robust according to 
z score. Accordingly, both the models can predict the 
activities of hitherto untested compounds with 95 % 
confidence within their AD. The molecular docking 
studies show that active compounds occupied a similar 

Fig. 9: Position of some compounds in the DPP-IV active site relative to the crystallographic ligand
Compounds are represented in white and green, crystallographic ligand in magenta. Active compounds, 12v 12x, 23, 12m; 
moderately active compounds, 40, 36, 24; less active compound, 12b

space in the active site as the crystallographic ligand 
(sitagliptin) while the binding modes of compounds 
from moderately active and inactive classes were 
different, thus providing confidence in the prediction of 
binding pattern. It follows that kNN-MFA (and PLSR) 
models in combination with molecular docking may be 
applied for further exploration of active compounds.
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