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Thanh and Hoai: Benzaldehydes (Tetra-O-acetyl-β-D-galactopyranosyl)thiosemicarbazones: Synthesis and Activity

Some new substituted benzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl) thiosemicarbazones were 
synthesised by reaction of 2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl thiosemicarbazide and different substituted 
benzaldehydes. The reaction was performed using conventional and microwave-assisted heating methods. The 
structures of thiosemicarbazones were confirmed by spectroscopic (IR, 1H NMR, 13C NMR and MS) method. The 
antioxidant activity of these thiosemicarbazones was evaluated, in vitro and in vivo, and it’s shown that some of 
these compounds had significant antioxidant activity.
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Thiosemicarbazones, which have NH-C(=S)
NHN=C bond, are a class of compounds that 
have been evaluated over the last 50 years as 
antivirals and as anticancer therapeutics, as well as 
for their parasiticidal action against Plasmodium 
falciparum and Trypanasoma cruzi which are the 
causative agents of malaria and Chagas’s disease, 
respectively[1]. The chemistry of thiosemicarbazide 
derivatives of saccharides is interested[2,3]. These 
compounds arouse interest as versatile intermediates 
for preparing various (e.g., heterocyclic) derivatives 
as well. Thiosemicarbazones can be used for 
making complex formation of metallic ions[4- 13]. 
Thiosemicarbazones exhibit various biological activities 
such as antituberculosis[14,15], antimicrobial[9,16-18], 

antiinflammatory[19], anticonvulsant[9,20], antihypertensive[21], 

local anesthetic[22], anticancer[10,23], hypoglycemic[24], 

and cytotoxic activities[9], also antioxidant agents[11,25]. 
A number of galactosyl thiosemicarbazide derivatives 
showed significant in vivo antimicrobial and in vitro 
antioxidant activity, which could be used as leads 
for the development of effective antiatherosclerotic 
agents[2,20,26,27]. On the other hand these molecules can 
also serve as phosphane-free multidentate ligands for 
transition-metal catalysis, and they are efficient ligands 
for palladium-catalyzed coupling reactions in air[25].

In the past some papers have been published for 
the synthesis of aldehyde/ketone (per-O-acetylated 
glycopyranosyl)thiosemicarbazones[2,3,18,25,28-30]. 
The main synthetic step for the synthesis 
of these molecules is being the reaction of 
(per- O-acetylglycosyl)thiosemicarbazide with the 
coresponding carbonyl compounds. Continuing 
our studied on the synthesis and the reactivity of 
(per-O-acetatylglycopyranosyl)isothiocyanate and 
(per-O-acetatylglycopyranosyl) thiosemicarbazides[29,30], 

we report herein a systematic study for the synthesis 
and spectral characterization of a series of aromatic 
aldehyde 4-(b-D-galactopyranosyl)thiosemicarbazones 
using microwave-assisted method[31].

MATERIALS AND METHODS

All melting points were determined by open capillary 
method on Stuart SMP3 instrument (Bibby Sterilin 
Ltd, UK) and are uncorrected. IR spectra (KBr disc) 
were recorded on a Impact 410 FT-IR Spectrometer 
(Nicolet, USA). 1H and 13C NMR spectra were 
recorded on Bruker Avance Spectrometer AV500 
(Bruker, Germany) at 500.13 MHz and 125.77 MHz, 
respectively, using DMSO-d6 as solvent and TMS as 
an internal standard. All the starting materials and 
reagents were purchased from commercial suppliers 
and used after further purification. (2,3,4,6-Tetra-O-
acetyl-b-D-galactopyranosyl)isothiocyanate (1) was 



www.ijpsonline.com

January - February 2012 	 Indian Journal of Pharmaceutical Sciences	 55

prepared by the reaction of (tetra-O-acetylated-b-D-
galactopyranosyl)bromide (prepared from D-galactose, 
using the procedure for D-glucose)[32] with lead 
thiocyanate in dried toluene[18]. (2,3,4,6-Tetra-O-
acetyl-β-D-galactopyranosyl)thiosemicarbazide (2) was 
prepared from corresponding isothiocyanate compound 
by modifying our method[30].

General procedure for synthesis of substituted 
benzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazones (4a-m):
Conventional Method (for compounds 4a, 4b, 4d 
and 4m): A suspension mixture of (2,3,4,6-tetra-
O-acetyl-β-D-glucopyranosyl)thiosemicarbazide (1) 
(4.21 g,  1  mmol) and corresponding substituted 
benzaldehyde 3(a-m) (1 mmol) and glacial acetic 
acid (1 ml) in methanol (20 ml) was refluxed for 
90 min. The solvent was removed under reduced 
pressure and the residue was triturated with water, the 
precipitate was filtered by suction and recrystallized 
from 95% ethanol or 70% ethanol to afford the title 
compounds of benzaldehyde (2,3,4,6-tetra-O-acetyl-β-
D-galactopyranosyl)thiosemicarbazones (4a-m).

Microwave-assisted Method (for all compounds): 
A suspension mixture of (2,3,4,6-tetra-O-acetyl-
β-D-glucopyranosyl)thiosemicarbazide 1 (4.21 g, 
1  mmol) and corresponding substituted benzaldehyde 
3(a-m) (1 mmol) and glacial acetic acid (0.05 ml) in 
99.5% ethanol (2–5 ml) was irradiated with reflux 
for 5-7  min in microwave oven. The suspension 
mixture became clear solution after irradiating in 
3-4  min. After reaction the mixture was cooled to 
room temperature, the colourless crystals were filtered 
with suction. The crude product was recrystallized 
from 95% ethanol or 70% ethanol to afford the title 
compounds of benzaldehyde (2,3,4,6-tetra-O-acetyl-β-
D-galactopyranosyl)thiosemicarbazones (4a-m). The 
physical and spectral (IR, 1H NMR, 13C NMR and MS) 
data are in good agreement with their structures.

4-Nitrobenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4a):
Light yellow solid; mp 157-158°; IR (KBr, cm–1): 
3337 (NH), 1744 (C=O), 1587 (CH=N), 1226, 1048 
(C-O-C); 1H NMR (DMSO-d6, δ.ppm): 9.00 (d, 1H, 
J 9.0 Hz, H-4”), 12.17 (s, 1H, 1H, H-2”), 8.20 (s, 
1H, H imine), 5.93 (t, 1H, J 9.0 Hz, H-1), 5.35 (m, 
1H, H-2), 5.40 (dd, 1H, J 10.0, 3.5 Hz, H-3), 5.35 
(m, 1H, H-4), 4.33 (t, 1H, J 6.5 Hz, H-5), 4.07 (d, 
1H, J 6.5 Hz, H-6), 8.14 (d, 1H, J  9.0 Hz, H-2’), 

8.27 (d, 1H, J 9.0 Hz, H-3’), 8.27 (d, 1H, 1H, J 
9.0 Hz, H-5’), 8.14 (d, 1H, J  9.0 Hz, H-6’), 1.96-
2.16 (s, 1H, 12H, CH3CO); 13C NMR (DMSO-d6, δ 
ppm): 178.84 (C=S), 81.94 (C-1), 68.67 (C-2), 70.61  
(C-3), 67.53 (C-4), 71.71 (C-5), 61.28 (C-6), 140.21 
(C-1’), 123.77 (C-2’), 128.53 (C-3’), 141.23 (C-4’), 
128.53 (C-5’), 123.77 (C-6’), 147.90 (C-imine), 
20.32-20.51 (CH3CO), 169.36-170.01 (CH3CO); MS 
m/z: 555 (M+ + H, 72%), 577 (M+ + Na, 100%) for 
C22H26N4O11S.

3-Nitrobenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4b):
Light yellow solid; mp 169-170°; IR (KBr, cm–1): 
3338 (NH), 1745 (C=O), 1625 (CH=N), 1228, 1054 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.96 (d, 1H,  
J 9.0 Hz, H-4”), 12.13 (s, 1H, H-2”), 8.22 (s, 1H, H 
imine), 5.91 (t, 1H, J 9.0 Hz, H-1), 5.34 (m, 1H, 1H, 
H-2), 5.41 (dd, 1H, J 9.5, 3.5 Hz, H-3), 5.34 (m, 1H, 
H-4), 4.34 (t, 1H, J 6.5 Hz, H-5), 4.06 (m, 1H, H-6), 
8.22 (s, 1H, H-2’), 8.36 (d, 1H, J 8.0 Hz, H-4’), 7.74 
(t, 1H, J 8.0 Hz, H-5’), 8.26 (dd, 1H, J 8.0, 1.0 Hz, 
H-6’), 1.96-2.00 (s, 1H, CH3CO); 13C NMR (DMSO-d6, 
δ ppm): 178.69 (C=S), 81.89 (C-1), 68.62 (C-2), 70.50 
(C-3), 67.50 (C-4), 71.64 (C-5), 61.23 (C-6), 130.15 
(C-1’), 135.71 (C-2’), 141.58 (C-3’), 133.44 (C-4’), 
124.40 (C-5’), 122.06 (C-6’), 148.33 (C-imine), 20.32-
20.52 (CH3CO), 169.33-169.99 (CH3CO); MS m/z: 554 
(M+ 100%) for C22H26N4O11S.

4-Fluorobenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4c):
White solid; mp 113-114°; IR (KBr, cm–1): 3341 
(NH), 1606 (CH=N), 1750 (C=O), 1261, 1045 
(C-O-C); 1H NMR (DMSO-d6, δ.ppm): 8.75 (d, 
1H, J 9.0 Hz, H-4”), 11.93 (s, 1H, H-2”), 8.11  
(s, 1H, H imine), 5.90 (t, 1H, J 9.0 Hz, H-1), 5.32 
(m,  1H, H-2), 5.40 (dd, 1H, J 10.0, 3.5 Hz, H-3), 
5.32 (m,  1H, H-4), 4.33 (t, 1H, J 6.0 Hz, H-5), 4.06 
(m, 1H, H-6), 7.28 (t, 1H, J 9.0 Hz, H-2’), 7.92 
(dd, 1H, J 9.0, 6.0 Hz, H-3’), 7.92 (dd, J 9.0, 6.0 
Hz, H-5’), 7.28 (t, 1H, J 9.0 Hz, H-6’), 2.02-2.15 
(s, 12H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 
178.35 (C=S), 81.76 (C-1), 68.61 (C-2), 70.55 (C-
3), 67.51 (C-4), 71.56 (C-5), 61.24 (C-6), 130.37 
(C-1’), 129.84 (C-2’), 115.73 (C-3’), 163.25 (C-4’), 
115.73 (C-5’), 129.84 (C-6’), 142.67 (C-imine), 
20.29-20.48 (CH3CO), 169.31-169.98 (CH3CO); MS 
m/z: 528 (M+ + H, 66%), 550 (M+ + Na, 100%) for 
C22H26FN3O9S.
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4-Chlorobenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4d):
White solid, mp 173-174°; IR (KBr, cm–1): 3325 
(NH), 1754 (C=O), 1600 (CH=N), 1245, 1054 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.78 (d, 1H, 
J 9.0 Hz, H-4”), 11.95 (s, 1H, H-2”), 8.08 (s, 1H, 
H imine), 5.88 (t, 1H, J 9.0 Hz, H-1), 5.30 (t, 1H, J 
9.5 Hz, H-2), 5.37 (dd, 1H, J 10, 3.5 Hz, H-3), 5.32 
(d, 1H, J 4.0 Hz, H-4), 4.30 (t, 1H, J 6.5 Hz, H-5), 
4.04 (d, 1H, J 6.5 Hz, H-6), 7.48 (d, 1H, J 8.5 Hz, 
H-2’), 7.86 (d, 1H, J 8.5 Hz, H-3’), 7.86 (d, 1H, J 
8.5 Hz, H-5’), 7.48 (d, 1H, 8.5 Hz, H-6’), 2.02-2.15 
(s, 12H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 
178.53 (C=S), 81.92 (C-1), 68.73 (C-2), 70.68 (C-3), 
67.62 (C-4), 71.72 (C-5), 61.37 (C-6), 134.86 (C-1’), 
128.88 (C-2’), 129.36 (C-3’), 132.81 (C-4’), 129.36 
(C-5’), 128.88 (C-6’), 142.70 (C-imine), 20.41-20.61 
(CH3CO), 169.51-170.17 (CH3CO); MS m/z: 544/546 
(M+ + H, 100%/34%), 566/568 (M+ + Na, 98%/39%) 
for C22H26

35ClN3O9S/C22H26
37ClN3O9S.

4-Bromobenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4e):
White solid, mp 159-160°; IR (KBr, cm–1): 3331 
(NH), 1748 (C=O), 1595 (CH=N), 1227, 1052 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.77 (d, 1H, 
J 9.0 Hz, H-4”), 11.95 (s, 1H, H-2”), 8.06 (s, 1H, 
H imine), 5.88 (t, 1H, J 9.0 Hz, H-1), 5.30 (t, 1H, 
J 10.0 Hz, H-2), 5.37 (dd, 1H, J 10.0, 4.0 Hz, H-3), 
5.31 (d, 1H, 4.5, H-4), 4.30 (t, 1H, J 6.5 Hz, H-5), 
4.03 (d, 1H, J 6.5 Hz, H-6), 7.79 (d, 1H, J 8.5 Hz, 
H-2’), 7.61 (d, 1H, J 8.5 Hz, H-3’), 7.61 (d, 1H, J 
8.5 Hz, H-5’), 7.79 (d, 1H, J 8.5 Hz, H-6’), 1.93-2.13 
(s, 12H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 
178.41 (C=S), 81.77 (C-1), 68.59 (C-2), 70.54 (C-3), 
67.48 (C-4), 71.56 (C-5), 61.21 (C-6), 133.05 (C-1’), 
131.62 (C-2’), 129.43 (C-3’), 123.50 (C-4’), 129.43 
(C-5’), 131.62 (C-6’), 142.56 (C-imine), 20.28-20.47 
(CH3CO), 169.27-169.94 (CH3CO); MS m/z: 588/590 
(M+ + H, 89%/78%), 610/612 (M+ + Na, 100%/97%) 
for C22H26

79BrN3O9S/C22H26
81BrN3O9S.

4-Methybenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4f):
White solid, mp 180-181°; IR (KBr, cm–1): 3334 
(NH), 1747 (C=), 1609 (CH=N), 1233, 1054 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.62 (d, 1H, 
J 9.0 Hz,   H-4”), 11.85 (s, 1H, H-2”), 8.06 (s, 1H, 
H  imine), 5.85 (t, 1H, J 9.5 Hz, H-1), 5.27 (t, 1H, J 
10.0 Hz, H-2), 5.36 (dd, 1H, J 9.5, 4.0 Hz, H-3), 5.31 
(d, 1H, J  3.5 Hz, H-4), 4.29 (t, 1H, J 6.5 Hz, H-5), 

4.03 (d, 1H, J 6.5 Hz, H-6), 7.69 (d, 1H, J 8.0  Hz, 
H-2’), 7.23 (d, 1H, J 8.0 Hz, H-3’), 7.23 (d, 1H, J 
8.0 Hz, H-5’), 7.69 (d, 1H, J 8.0 Hz, H-6’), 1.93-2.13 
(s, 12H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 
178.22 (C=S), 81.75 (C-1), 68.63 (C-2), 70.57 (C-3), 
67.57 (C-4), 71.59 (C-5), 61.29 (C-6), 131.03 (C-1’), 
129.40 (C-2’), 127.62 (C-3’), 140.32 (C-4’), 127.62 
(C-5’), 129.40 (C-6’), 144.11 (C-imine), 20.35-21.00 
(CH3CO), 169.41-170.13 (CH3CO), 18.53 (4’-CH3); 
MS m/z: 524 (M+ + H, 100%), 546 (M+ + Na, 84%) 
for C23H29N3O9S.

4-Isopropylbenzaldehyde (2,3,4,6-tetra-O-acetyl-β-
D-galactopyranosyl)thiosemicarbazone (4g):
White solid, mp 172-173°; IR (KBr, cm–1): 3355 
(NH), 1748 (C=O), 1608 (CH=N), 1223, 1054 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.63 (d, 
1H, J 9.5 Hz, H-4”), 11.92 (s, 1H, H-2”), 8.10 (s, 
1H, H imine), 5.87 (t, 1H, J 9.5 Hz, H-1), 5.30 (t, 
1H, J 10.0 Hz, H-2), 5.41 (dd, 1H, J 10.0, 3.5 Hz, 
H-3), 5.35 (d, 1H, J 3.5 Hz, H-4), 4.33 (t, 1H, J 
6.5 Hz, H-5), 4.06 (d, 1H, J 6.5 Hz, H-6), 7.32 (d, 
1H, J 8.0 Hz, H-2’), 7.50 (d, 1H, J 8.0 Hz, H-3’), 
7.50 (d, 1H, J 8.0 Hz, H-5’), 7.32 (d, 1H, J 8.0 
Hz, H-6’), 1.96-2.16 (s, 1H, CH3CO); 13C NMR 
(DMSO-d6,  δ ppm): 178.17 (C=S), 81.61 (C-1), 68.53 
(C-2), 70.46 (C-3), 67.48 (C-4), 71.48 (C-5), 61.18 
(C-6), 131.37 C-1’), 126.64 (C-2’), 127.62 (C-3’), 
150.95 (C-4’), 127.62 (C-5’), 126.64 (C-6’), 143.87 
(C-imine), 20.26-20.45 (CH3CO), 169.25-170.02 
(CH3CO), 33.34 [4’-CH(CH3)2], 23.56 [4’-CH(CH3)2]; 
MS m/z: 552 (M+ + H, 88%), 574 (M+ + Na, 100%) 
for C25H33N3O9S.

4-Hydroxybenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4h):
White solid, mp 234-235°; IR (KBr, cm–1): 3354 
(NH), 1752 (C=O), 1608 (CH=N), 1216, 1039 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.53 (d, 1H, 
J 9.0 Hz, H-4”), 11.76 (s, 1H, H-2”), 8.01 (s, 1H, 
H imine), 5.86 (t, 1H, J 9.0 Hz, H-1), 5.23 (t, 1H, 
J 9.5 Hz, H-2), 5.38 (dd, J 10.0, 4.0 Hz, H-3), 5.33 
(d, 1H, J 3.5 Hz, H-4), 4.30 (t, 1H, J 6.0 Hz, H-5), 
4.04 (d, 1H, J 7.0 Hz, H-6), 6.82 (d, 1H, J 8.5 Hz, 
H-2’), 7.65 (d, 1H, J 8.5 Hz, H-3’), 7.65 (d, 1H, J 
8.5 Hz, H-5’), 6.82 (d, 1H, J 8.5 Hz, H-6’), 1.94-
2.14 (s, 1H, CH3CO); 13C NMR (DMSO-d6, δ  ppm): 
177.78 (C=S), 81.64 (C-1), 68.61 (C-2), 70.53 
(C-3), 67.53 (C-4), 71.51 (C-5), 61.25 (C-6), 144.31 
(C-1’), 129.41 (C-2’), 115.66 (C-3’), 124.68 (C-4’), 
115.66 (C-5’), 129.41 (C-6’), 159.70 (C-imine), 
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20.31-20.51 (CH3CO), 169.35-170.09 (CH3CO); MS 
m/z: 526 (M+ + H, 81%), 548 (M+ + Na, 100%) for 
C22H27N3O10S.

3-Methoxybenzaldehyde (2,3,4,6-tetra-O-acetyl-β-D-
galactopyranosyl)thiosemicarbazone (4i):
White solid, mp 223-224°; IR (KBr, cm–1): 3348 
(NH), 1745 (C=O), 1582 (CH=N), 1220, 1055 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.67 (d, 
1H, J 8.5 Hz, H-4”), 11.97 (s, 1H, H-2”), 8.08 (s, 
1H, H imine), 5.82 (t, 1H, J 9.0 Hz, H-1), 5.29 (t, 
1H, J 10.0 Hz, H-2), 5.40 (dd, 1H, J 10.0, 4.0 Hz, 
H-3), 5.33 (d, 1H, J 3.5 Hz, H-4), 4.31 (t, 1H, J 
6.5 Hz, H-5), 4.05 (m, 1H, H-6), 7.46 (d, 1H, J 1.0 
Hz, H-2’), 7.34 (m, 1H, H-4’), 7.34 (m, 1H, H-5’), 
7.01 (ddd, 1H, J 8.0, 1.4, 1.0 Hz, H-6’), 1.95-2.14 
(s, 1H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 
178.42 (C=S), 81.64 (C-1), 68.45 (C-2), 70.41 (C-3), 
67.51 (C-4), 71.48 (C-5), 61.16 (C-6), 135.11 (C-1’), 
129.78 (C-2’), 159.58 (C-3’), 120.77 (C-4’), 111.38 
(C-5’), 116.57 (C-6’), 143.65 (C-imine), 20.32-20.50 
(CH3CO), 169.31-170.25 (CH3CO), 55.26 (s, 3H, 
3’-OCH3); MS m/z: 540 (M+ + H, 100%), 562 (M+ + 
Na, 83%) for C23H29N3O10S.

3-Hydroxy-4-methoxybenzaldehyde (2,3,4,6-tetra-
O-acetyl-β-D-galactopyranosyl) thiosemicarbazone 
(4j):
White solid, mp 181-182°; IR (KBr, cm–1): 3313 (NH), 
1744 (C=O), 1600 (CH=N), 1243, 1040 (C-O-C); 
1H NMR (DMSO-d6, δ ppm): 8.51 (d, 1H, J 9.0 Hz, 
H-4”), 11.78 (s, 1H, H-2”), 7.98 (s, 1H, H imine), 
5.89 (t, 1H, J 9.0 Hz, H-1), 5.26 (t, 1H, J 9.5  Hz, 
H-2), 5.39 (dd, 1H, J 10.0, 4.0 Hz, H-3), 5.32 (d, 1H, 
J 3.5 Hz, H-4), 4.31 (t, 1H, J 6.5 Hz, H-5), 4.04 (d, 
1H, J 6.5 Hz, H-6), 7.31 (d, 1H, J 2.0 Hz, H-2’), 6.96 
(d, 1H, J 8.5 Hz, H-5’), 7.14 (dd, 1H, J 8.5, 2.0 Hz, 
H-6’), 1.93-2.15 (s, 1H, CH3CO); 13C NMR (DMSO-d6, 
δ ppm): 177.79 (C=S), 81.65 (C-1), 68.63 (C-2), 
70.53 (C-3), 67.54 (C-4), 71.55 (C-5), 61.29 (C-6), 
126.51 (C-1’), 120.70 (C-2’), 146.74 (C-3’), 150.03 
(C-4’), 113.31 (C-5’), 111.78 (C-6’), 144.51 (C-imine), 
20.33-20.53 (CH3CO), 169.34-170.04 (CH3CO), 55.69 
(4’-OCH3); MS m/z: 556 (M+ + H, 36%), 578 (M+ + 
Na, 100%) for C23H29N3O11S.

3-Methoxy-4-hydroxybenzaldehyde (2,3,4,6-tetra-
O-acetyl-β-D-galactopyranosyl) thiosemicarbazone 
(4k):
White solid, mp 246-247°; IR (KBr, cm–1): 3352 
(NH), 1744 (C=O), 1601 (CH=N), 1223, 1055; 1H 

NMR (DMSO-d6, δ ppm): 8.51 (d, 1H, J 8.5 Hz, 
H-4”), 11.85 (s, 1H, H-2”), 8.01 (s, 1H, H imine), 
5.77 (t, 1H, J 9.0, H-1), 5.26 (t, 1H, J 9.5 Hz, H-2), 
5.42 (dd, 1H, J 10.0, 3.5, H-3), 5.33 (d, 1H, J 3.5 Hz, 
H-4), 4.31 (t, 1H, J 6.5 Hz, H-5), 4.05 (m, 1H, H-6), 
7.48 (d, 1H, J 1.5 Hz, H-2’), 6.83 (d, 1H, J 8.0 Hz, 
H-5’), 7.12 (dd, J 8.0, 4.0 Hz, H-6’), 1.96-2.14 (s, 
1H, CH3CO); 13C NMR (DMSO-d6, δ ppm): 177.90 
(C=S), 81.54 (C-1), 68.38 (C-2), 70.31 (C-3), 67.55 
(C-4), 71.41 (C-5), 61.10 (C-6), 125.07 (C-1’), 
109.58 (C-2’), 148.13 (C-3’), 149.23 (C-4’), 119.26 
(C-5’), 122.63 (C-6’), 144.28 (C-imine), 20.32-20.49 
(CH3CO), 169.30-170.53 (CH3CO), 55.73 (3’-OCH3); 
MS m/z: 556 (M+ + H, 65%), 578 (M+ + Na, 100%) 
for C23H29N3O11S.

3-Ethoxy-4-hydroxybenzaldehyde (2,3,4,6-tetra-O-
acetyl-β-D-galactopyranosyl) thiosemicarbazone 
(4l):
White solid, mp 204-205°; IR (KBr, cm–1): 3345 
(NH), 1747 (C=O), 1600 (CH=N), 1223, 1051 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.49 (d, 1H, 
J 9.0 Hz, H-4”), 11.84 (s, 1H, H-2”), 8.01 (s, 1H, 
H imine), 5.79 (t, 1H, J 9.5 Hz, H-1), 5.26 (t, 1H, J 
10.0, H-2), 5.42 (d, 1H, d, J 10, 4.0 Hz, H-3), 5.35 
(d, 1H, J 3.5 Hz, H-4), 4.32 (t, 1H, J 6.5 Hz, H-5), 
4.04 (m, 1H, H-6), 7.43 (d, 1H, J 1.5 Hz, H-2’), 
6.85 (d, 1H, J 8.0 Hz, H-5’), 7.15 (dd, 1H, J 8.0, 
1.5 Hz, H-6’), 1.97-2.15 (s, 1H, CH3CO); 13C NMR 
(DMSO-d6, δ ppm): 177.86 (C=S), 81.56 (C-1), 68.39 
(C-2), 70.34 (C-3), 67.56 (C-4), 71.44 (C-5), 61.11 
(C-6), 125.03 (C-1’), 122.45 (C-2’), 147.16 (C-3’), 
149.56 (C-4’), 115.48 (C-5’), 111.11 (C-6’), 144.44 
(C-imine), 20.32-20.48 (CH3CO), 169.30-170.48 
(CH3CO), 63.93 [3’-OCH2CH3], 14.68 [3’-OCH2CH3]; 
MS m/z: 570 (M+ + H, 100%), 592 (M+ + Na, 87%) 
for C24H31N3O11S.

4-Dimethylaminobenzaldehyde (2,3,4,6-tetra-O-
acetyl-β-D-galactopyranosyl) thiosemicarbazone 
(4m):
White solid, mp 217-218°; IR (KBr, cm–1): 3343 
(NH), 1744 (C=O), 1600 (CH=N), 1223, 1055 
(C-O-C); 1H NMR (DMSO-d6, δ ppm): 8.43 (d, 1H, 
J 9.0 Hz, H-4”), 11.71 (s, 1H, H-2”), 7.99 (s, 1H, 
H imine), 5.85 (t, 1H, J 9.5 Hz, H-1), 5.26 (t, 1H, J 
10.0 Hz, H-2), 5.40 (dd, J 10.0, 3.5 Hz, H-3), 5.34 
(d, 1H, J 3.5 Hz, H-4), 4.31 (t, 1H, J 6.5 Hz, H-5), 
4.05 (d, 1H, 6.5 Hz, H-6), 6.73 (d, 1H, J 9.0 Hz, 
H-2’), 7.61 (d, 1H, J 9.0 Hz, H-3’), 7.61 (d, 1H, J 
9.0 Hz, H-5’), 6.73 (d, 1H, J 9.0 Hz, H-6’), 1.95- 2.15 



www.ijpsonline.com

58	 Indian Journal of Pharmaceutical Sciences	 January - February 2012

(s, 1H, CH3CO); 13C NMR (DMSO-d6, δ  ppm): 
177.25 (C=S), 81.50 (C-1), 68.50 (C-2), 70.42 (C-3), 
67.48 (C-4), 71.38 (C-5), 61.16 (C-6), 120.77 (C-1’), 
111.62 (C-2’), 128.86 (C-3’), 151.65 (C-4’), 128.86 
(C-5’), 111.62 (C-6’), 144.80 (C-imine), 20.26-
20.45 (CH3CO), 169.24-170.05 (CH3CO), 20.37 [4’-
N(CH3)2]; MS m/z: 553 (M+ + H, 100%), 575 (M+  + 
Na, 64%) for C24H32N4O9S.

Screening for Antioxidant activity:
Chrysin, dicyclohexylcarbodiimide (DCC) and 
diethylphosphoryl cyanide (DEPC) were purchased 
from Sigma Chemical Co. Other derivatizing reagents 
were obtained from Aldrich Chemical Co. Sodium 
azide, ethylenediamine tetraacetic acid (EDTA), 
b-nicotinamide adenine dinucleotide phosphate, 
reduced form (NADPH), cumene hydroperoxide, 
glutathione reductase, DL-α-tocopherol acetate, carbon 
tetrachloride (CCl4), xanthine, potassium cyanide 
(KCN), sodium dodecylsulfate, trichloroacetic acid 
(TCA), cytochrome C, thiobarbituric acid, n-butanol 
and pyridine were purchased from Sigma Chem. 
Co. All other chemicals and reagents were analytical 
grade.

Screening for Antioxidant activity by DPPH 
method:
All the synthesised compounds were evaluated for 
antioxidant activity and comprared with standard 
drug (resveratrol). The activity was evaluated using 
the DPPH method[33-35]. The 150mM solution of 
DPPH (195 ml) was added to standard solution 
(resveratrol) and tested sample solutions (5 ml each) 
of different concentrations (0.5, 1.0, 2.0, 4.0, 8.0 and 
12.0 mM) on 96-hole ELISA plates and allow to 
react at temperature 25° in incubator. After 30 min 
the absorbance values were measured at 518 nm and 
converted into the percentage antioxidant activity 
(AA) using formula, AA% = [(AbsDPPH – Abssample)/
(AbsDPPH – Absethanol)].100%, where AbsDPPH was the 
absorbance of DPPH solution which was used as a 
negative prepared by adding 5 μl ethanol to 195 μl of 
150 mM solution of DPPH in ethanol, Abssample was 
the absorbance of sample solution, Absethanol was the 
absorbance of ethanol, which was used as a blank. 
The positive controls were those using the standard 
solution containing resveratrol. All tests and analyses 
were undertaken on three replicates and the results 
averaged. The IC50 values were calculated by linear 
regression plots, where the abscissa represented the 
concentration of tested compound solution (0.5, 1.0, 

2.0, 4.0, 8.0 and 12.0 mM) and the ordinate the 
average percent of antioxidant activity from three 
separate tests. The results are tabulated in Table 1.

Antioxidant assay in vivo:
Albino rats of Wistar strain, weighing 100–150  g 
were used in all experiments. Animals were 
maintained on 12 h light/dark cycle at approximately 
22° and allowed food and water ad libitum. Rats 
were injected i.p, with a mixture of CCl4 in olive oil 
(1: 1) at a dose of 0.6 ml/kg to induce hepatotoxicity. 
Control animals were given the vehicle alone. Rats 
were pretreated once with DL-a-tocopherol acetate 
(a dose of 400 mg/kg) and test samples were given 
i.p. at a dose of 100 mg/kg/day for seven consecutive 
days prior to the administration of CCl4. Animals 
were sacrified 24 h after CCl4 dosing and blood was 
collected by decapitation for the determination of 
serum transaminases.

Hepatic tissues were carefully excised and 
homogenized in cold 1.15% KCl-10 mM phosphate 
buffer with EDTA (pH 7.4) and centrifuged at 
12 000 rpm for 8 min. The supernatant was further 
centrifuged at 45 000 rpm for 50 min to obtain 
cytosolic extract for the measurement of liver 
cytosolic SOD, catalase and GSH-px activities. 
The protein content was measured by the method 
of Lowry et al.[36] with bovine serum albumin as a 
standard.

Determination of antioxidant enzyme activities:
SOD was assayed by the method of McCord and 
Fridovich[37]. The reaction mixture was make from 

TABLE 1: ANTIOXIDANT ACTIVITY OF SYNTHESISED 
COMPOUNDS BY DPPH METHOD
Conc.
Compd. 

Scavenging effect for DPPH (%) IC50 
(µM)12.5 25 50 100 200 300

4a 6.11 11.32 18.47 29.08 53.30 64.46 210
4b 7.05 13.74 19.63 26.29 38.31 51.24 283
4c 8.51 13.32 17.08 34.34 55.63 67.19 197
4d 7.15 10.09 17.61 19.82 38.37 55.42 270
4e 5.38 9.04 17.46 23.51 35.42 44.31 >300
4f 7.21 12.76 18.06 32.84 53.27 65.03 206
4g 2.17 5.32 9.65 15.09 18.13 24.48 >300
4h 11.45 22.61 33.27 49.18 68.74 75.08 108
4i 7.34 11.46 15.63 27.17 34.02 55.07 276
4j 8.16 17.43 28.21 40.09 56.80 69.61 182
4k 9.45 27.11 45.64 60.30 71.23 74.05 75
4l 14.16 30.24 45.38 59.42 68.34 69.16 71
4m 14.32 30.86 48.94 68.17 74.54 78.47 56
Resveratrol 9.13 22.56 33.84 54.03 70.44 75.62 94
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300 ml of 0.5 mM solution of xanthine as substrate, 
100 ml of 0.05 mM solution of KCN, 100 ml of 
solution of 1% sodium deoxycholate, 20 ml of solution 
of xanthine oxidase, 20 ml of solution of cytosolic 
extract and 300 ml of soltuion of 0.1 mM cytochrome 
C and placed in a 1 cm cuvette and the rate of 
increase in absorbance at 550 nm was recorded for 5 
min. SOD activity was expressed as unit/mg protein.

Catalase was assayed by the method of Rigo and 
Rotilio[38,39]. The cytosolic extract of liver (40 ml) 
diluted 10 times was added with 0.13 mM phosphate 
buffer (pH 7.0, 500 ml), distilled by 660 ml of 
water and 1800 ml of 15 mM solution of H2O2 
and thoroughly mixed. The rate of changes in the 
absorbance at 240 nm for 5 min was recorded. 
Catalase activity was expressed as unit/mg protein.

Statistical analysis:
Results were subjected to one-way ANOVA and 
p<0.05 was considered significant. The post hoc 
analysis was carried out by Dunnet’s multiple 
comparison test[40].

RESULTS AND DISCUSSION

Condensation reaction of tetra-O-acetyl-b-
D-galactopyranosyl thiosemicarbazide 2 with a 
number of substituted benzaldehydes 3a-m lead to 
form a series of benzaldehyde (tetra-O-acetyl-b-D-
galactopyranosyl)thiosemicarbazones 4a-m (fig. 1 
and Table 2). The reaction was performed by using 
microwave-assissted heating and conventional heating 
methods. The microwave-assisted synthetic pathway 
was carried out using minimum amount of solvent 

TABLE 2: SYNTHETIC CONDITIONS FOR COMPOUNDS 4a-m
Compd. R Microwave-assisted method Conventional method

Reaction 
time, min

Ethanol 
solvent, ml

Yield, % Reaction 
time, min

Ethanol 
solvent, ml

Yield, %

4a 4-NO2 5 3 97 90 20 48
4b 3-NO2 5 3 70 90 20 60
4c 4-F 5 2 73
4d 4-Cl 5 2 98 90 20 32
4e 4-Br 5 2 98
4f 4-Me 5 2 60
4g 4-iPr 5 2 75
4h 4-OH 5 3 75
4i 3-OMe 5 2 85
4j 3-OH-4-OMe 7 3 75
4k 3-OMe-4-OH 7 3 70
4l 3-OEt-4-OH 7 3 80
4m 4-NMe2 7 3 74 90 20 64

Fig. 1: The synthesis route for preparation of the title compounds 4(a-m).
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(ethanol) and deceased reaction time comparing 
conventional heating pathway (2-3 ml volume versus 
20 ml, and 2-7 min versus 90 min, respectively). 
Reaction time was from 2 min to 7 min depending 
on substituent’s nature: withdrawing substituents 
need shorter reaction time than donating ones. In the 
first period of reaction when reaction was starting 
to irradiate about 1-3 min, the pasty mixture of 
reagents in methanol was dissolved and the reaction 
became homogenous. In the final period of reaction 
the solid product appeared and precipitated out. 
The products yields of microwawe-asisted method 
were fairly high from 60% to 98%, while ones of 
conventional heating methods were lower, from 32% 
to 64%. In some cases with benzaldehydes having 
4-Cl, 4-NO2 and 4-Br groups the yields attained 98%. 
These compounds can dissolved in ethanol toluene, 
chloroform, DMF,… and have high melting points. 
The synthesised products were characterized by IR, 
1H NMR and 13C NMR spectral data.

The IR spectra of compounds 4a-m showed 
characteristic absorptions in the range of 3354-
3313 cm-1 (N-H bond), 1752-1744, 1261-1216 and 
1055-1045 cm-1 (ester), 1370-1378 cm-1 (C=S), 
and 1625-1587 cm-1 (CH=N bond). The anomeric 
proton H-1 is represented as a triplet at δ = 5.90-
5.95 ppm due to the coupling with both H-4” and 
H-2 protons in the 1H NMR spectra of 4(a-m). The 
coupling constant values, JH-1,H-2 = 9.0-9.5 Hz, for the 
pyranose ring agreed with trans-axial H-H disposition 
and confirmed the b-anomeric configuration of 
compounds 4a-m. Signals of NH protons of the 
thiourea component in compounds 4a-m appeared 
at δ = 12.17-11.71 ppm (in singlet) for H-2” and  
δ = 9.00-8.43 ppm (in doublet, JNH,H-1 = 9.5-8.5 Hz) 
for H-4”. Proton of azomethine bond had chemical 
shift at δ = 8.22-  7.98 ppm in singlet. Other protons 
in pyranose ring had signals in region of 5.93-4.03 
ppm. Protons in benzene ring appeared at 8.27-6.73 
ppm. The 13C-NMR spectra showed the thiocarbonyl 
carbon atom with chemical shift at δ =178.84-177.25 
ppm. Carbon atom of azomethine bond showed 
chemical shift at δ = 159.70-142.56 ppm. Carbon 
atoms of benzene and pyranose rings had signals at 
δ = 159.58-111.11 and δ = 81.94-61.10 ppm , 
respectively. Acetate ester in sugar component had 
signals at δ = 20.51-20.26 and δ = 170.53-169.24 
ppm for carbon atoms in methyl and carbonyl groups, 
respectively. Protons in methyl group of acetate ester 
had chemical shifts at δ = 2.16-1.93  ppm.

The in vitro method of the scavenging of the 
stable DPPH radical is extensively used to evaluate 
antioxidant activities in less time than other methods. 
DPPH is a stable free radical molecule that can accept 
an electron or hydrogen radical and thus be converted 
into a stable, diamagnetic molecule. DPPH has an 
odd electron and so has a strong absorption band at 
518 nm. When this electron becomes paired off, the 
absorption decreases stoichiometrically with respect to 
the number of electrons taken up. Such a change in the 
absorbance produced in this reaction has been widely 
applied to test the capacity of numerous molecules to 
act as free radical scavengers. The scavenging effect of 
the synthesized compounds 4a- m on the DPPH radical 
was evaluated according to the methods of Shimada et 
al.[33], Leong and Shui[34] and Braca et al[35]. 

Amongst the compounds screened for antioxidant 
activity, 4h, 4k, 4l and 4m showed good antioxidant 
activity. The compounds with substituents such as 
4-OH (4h), 3-OMe-4-OH (4k), 3-OEt-4-OH (4l) and 
4-NMe2 (4m) showed very good antioxidant activity. 
Remained compounds do not show any antioxidant 
activity (Table 1, fig. 2 and 3).

Compounds 4a-m were tested in vivo for their 
anti-oxidant acitivities and the results are shown in 
Table  3. These compounds, when administered i.p, 
with a dry weight equivalent dosage of 100 mg/ kg/ day 
of total extract for seven consecutive days in the 
CCl4-intoxicated rats, was shown to cause a significant 

TABLE 3: EFFECT OF COMPOUNDS 4(a-m) ON THE 
LIVER CYTOSOLIC SOD, THE LIVER CYTOSOLIC GSH-
PX, THE LIVER CYTOSOLIC CATALASE ACTIVITIES AND 
THE HEPATIC MDA PRODUCTION
Compd. SOD (unit/

mg protein)
GHS-px (unit/
mg protein)

Catalase (unit/
mg protein)

4a 8.75±0.49 0.69±0.02 351.48±12.23
4b 8.96±0.52 0.70±0.01 359.57±11.83
4c 8.65±0.45 0.62±0.01 349.61±12.43
4d 8.89±0.62 0.68±0.01 357.87±12.23
4e 9.90±0.67 0.97±0.01 387.56±12.42
4f 8.78±0.35 0.67±0.02 351.21±11.53
4g 9.89±0.62 0.98±0.01 389.87±12.78
4h 8.14±0.56 0.48±0.02 334.67±10.37
4i 8.91±0.32 0.69±0.01 364.72±11.97
4j 8.54±0.56 0.54±0.02 345.56±11.77
4k 6.54±0.34 0.34±0.03 299.78±13.54
4l 6.35±0.45 0.65±0.02 316.56±12.45
4m 5.76±0.54 0.67±0.02 306.34±10.32
Resveratrol 7.43±0.50 0.32±0.02 294.22±10.23
Control 5.39±0.23 0.26±0.01 216.12±11.34
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elevation of free radical scavenging enzyme activities 
such as SOD, catalase and GSH-px. As shown in 
Table 1, some of these compounds (4k, 4l and 4m) 
caused significant elevation of SOD activity. Similar 
results were obtained in case of the catalase and the 
GSH-px activities as shown in Table 3.

In conclusion, a series of substituted benzaldehyde 
(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)
thiosemicarbazones have been synthesised 
from 2,3,4,6-tetra-O-acetyl-β-D-galctopyranosyl 
thiosemicarbazide and substituted benzaldehydes 
using conventional heating and microwave-assisted 
heating method. The antioxidant activity of these 
thiosemicarbazones was evaluated, in vitro and  
in vivo, and it’s shown that some of these compounds 
had significant antioxidant activity.
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