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Diabetes is often associated with psychological complications such as anxiety. The aim of this study 

was to evaluate the effects of pyrrolidine dithiocarbamate on anxiety of streptozotocin-induced 

diabetic mouse using the open field and the elevated plus maze tests. Confirmed diabetic mice (>16.7 

mM/l of blood glucose) were treated with pyrrolidine dithiocarbamate or 0.9% saline for 10 w. After 

pyrrolidine dithiocarbamate treatment, mice showed a higher % of time retention in open arms and 

higher percentage of entries in open arms than the diabetic group in the elevated plus maze. However, 

there were no differences between total distance and average speed in both groups in the open field 

test. In conclusion, pyrrolidine dithiocarbamate treatment in diabetic mice exerted anxiolytic-like 

effects. The present study might be suggestive of a novel treatment approach to diabetic anxiety. 
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Diabetes mellitus (DM) is the most common chronic endocrine metabolic disorder, which almost 

affect 366 million people in 2011, and predicted a rise to 552 million by 2030[1]. Diabetes is often 

associated with psychological complications such as anxiety[2,3]. It has been indicated that anxiety 

and anxiety related disorders are common in type I and II diabetic patients. Anxiety can be defined as 

an exaggerated emotional and dysfunctional state associated with hyper vigilance and increased 

behavioral responsiveness to fearful stimuli. Anxiety has been linked with a variety of behavioral 

variables, including poor disease management, higher health care costs, more days of missed work, 

which has severe impact on morbidity and mortality[4,5]. However, the underlying mechanisms of 

anxiety in diabetics still need to be elucidated. 

New pathways linking inflammation and psychiatric diseases are discovered[6,7]. An emerging 

body of evidence suggests that inflammatory mechanisms may contribute to the development of 

anxiety disorders[8,9]. It has been shown that anxiety patients and rodents exposed to acute stressors 

both show elevated serum levels of pro-inflammatory cytokines[10-12]. A number of studies have 

demonstrated increases in inflammatory markers such as tumor necrosis factor-α (TNF-α) and 

interleukins in anxiety related conditions including panic disorder and obsessive-compulsive disorder 

as well as anxiety related personality dimensions and diagnoses such as neuroticism and borderline 

personality disorder[13-15]. Therefore, inflammation is a recognized antecedent and coincident factor 

when examining the biology of anxiety. 

Recent data have shown that phobic anxiety is associated with higher serum concentrations of 
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adipokines and cytokines in women with diabetes[16]. Serum TNF-α, a marker for inflammation, was 

found to increase by 1100% in diabetic rats[17]. Chronic diabetes activates microglia and significantly 

increases pro-inflammatory cytokine levels in the hippocampus[18]. Microglial cells are activated and 

pro-inflammatory cytokines are induced in the hippocampus of type 2 diabetic rats. All these data 

indicate that inflammation plays an important role in diabetics. 

It has been shown that pyrrolidine dithiocarbamate (PDTC), an inhibitor of the activation of 

nuclear factor (NF-κB), produced a significant antianxiety like activity in stressed mice and reduced 

chronic normobaric hypoxia-induced anxiety like behavior in rats[19,20]. The characteristic long term 

upregulation of hippocampal NF-κB complex in post-traumatic stress disorder (PTSD) like 

behavioral stress response was normalized by high dose corticosterone and PDTC administered 

immediately after exposure[21]. However, whether PDTC affects anxiety in diabetics is still unknown. 

The aim of the present work was to determine the effects of PDTC on behavioral performance in 

anxiety tests of streptozotocin (STZ) induced diabetic mice. 

All experiments were performed according to the guidelines for use and care of laboratory 

animals and approved by the animal care and use committee (ACUC) of Tongji medical college of 

Huazhong university of science and technology. Mice were housed in groups of 4 animals per cage 

(30×19×13 cm) in a controlled environment with a 12 h light and 12 h dark cycle, average 

temperature of 22±2°, and 62±5% relative humidity with free access to chow and water (except 

during estimation of fasted blood glucose levels, where mice were fasted overnight). The animals 

were kept in our animal facility for at least 14 d before experiments. 

Twenty-four mice were randomly divided into three groups: control mice, diabetic mice (DM) 

and diabetic mice with PDTC (PDM). To induce diabetes, mice from the DM and PDM groups 

received a single intraperitoneal injection of streptozotocin (STZ, 150 mg/kg; Enzo Life Sciences, 

Ann Arbor, MI, USA) freshly prepared in 5 M sodium citrate, pH 4.5. Fasted blood glucose levels 

were monitored weekly using a glucometer. Blood was obtained via tail snip. Control mice were 
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injected with sodium citrate. Only mice with stable glucose levels more than 16.7 mM/l (95%) were 

considered as diabetic mice. 

Two weeks after STZ injection, diabetes was confirmed again in all diabetic animals. Time zero 

(w 0) was considered the moment of the start of PDTC treatment. PDTC was freshly prepared in 

0.9% saline with a concentration of 100 mg/kg and administrated by intraperitoneal injection at 

10:00 am every other d for 10 w to animals in the PDM group. In parallel, 0.9% saline was 

administrated to control mice and DM mice. 

Ten weeks after PDTC treatment, behavioral testing was done during the light cycle. Mice were 

brought to the experimental room in their home cages 1 h before the behavioral experiments to allow 

acclimatization to the test environment. The behavioral room was kept very quiet to rule out noises, 

which might influence stress levels of animals. The experimental room was kept at a controlled 

temperature (22±2). Mice were tested in the open field tests (OPT) and elevated plus maze (EPM) 24 

h after the last dosing of vehicle or drug treatment so as to avoid the acute effect of the drugs. Only 

one test was performed each d to prevent the residual effects of the testing paradigms. 

Elevated plus maze was used to test anxiety like behaviors[22]. In brief, the apparatus consisted of 

a wooden maze with two enclosed arms (35×10×40 cm) and two open arms (35×10×40 cm) that 

extended from a central platform (5×5 cm) to form a plus sign. The plus-maze apparatus was 

elevated to a height of 45 cm and placed inside a room free from noise and disturbances. Each mouse 

was placed on the central platform of the maze facing its head towards an open arm and left 

undistributed for 10 min. The behavioral parameters, percentage open arm entries, percentage time 

spent in open arm and total arm entries, were recorded during a 5-min test period. Increased 

percentage of open arms activity refered to antianxiety effects, while a decrease in activity revealed 

elevated anxiety like behavior in rodents. Entry into an arm was considered valid only when all four 

paws of the mouse were inside that arm[23,24]. The animal activities were recorded by a trained 

observer blind to the treatments. The apparatus was thoroughly cleaned with 70% ethanol after each 
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trial to avoid the residual effects. 

The OPT apparatus consists of a square Plexigals cage (35×35×40 cm) with walls to minimize 

outside light and noise. The animals were individually placed in the centre of the OFT apparatus and 

were left to move freely during a 10-min period. 

The data are expressed as mean±SEM and results were analyzed by one-way analysis of 

variance (ANOVA) followed by Dunnett’s t-test. P<0.05 were considered significant statistical 

analysis the data are expressed as mean±SEM and results. All values were expressed as mean±SEM. 

The results were statistically analyzed by ANOVA followed by post-hoc Tukey׳s multiple 

comparison test. Results were considered significant with an alpha level of 0.05 and were considered 

to show a tendency between 0.05 and 0.1. 

Effect of diabetes and PDTC on body weight and plasma glucose levels, plasma glucose levels 

were significantly elevated in diabetic mice 2 w after STZ injection, as compared with their initial 

glucose levels. There was a significant decline in the body weights of STZ-treated mice as compared 

with their initial body weight. However, chronic PDTC treatment did not affect the body weight and 

plasma glucose levels, as compared to the diabetic group (P>0.05). 

PDTC alleviated diabetes induced anxiety in the elevated plus maze, ten w after PDTC treatment, 

mice were subjected to the elevated plus maze task as described above. As depicted in (fig. 1). PDM 

group mice showed the increased tendency to explore open arms of the maze. Moreover, it was 

found that PDM group mice showed higher percentage of entries and spend less time in open arms as 

compared with DM group mice. In the open field test (fig. 2), there were no differences in traveled 

distance and average speed in 10 min among the three groups. 

In the present study, we evaluated the effects of PDTC on behavior performance of STZ-induced 

diabetic mice in anxiety tests. The diabetic mice showed high blood glucose levels. Our findings 

demonstrated that PDTC treatment changed behavioral profiles in mice with STZ-induced diabetes. 

It was observed that PDTC treatment produced anxiolytic like effects. These effects were shown in 
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the EPM by a higher frequency of entries in open arms. Thus, the current finding clearly revealed 

that PDTC treatment can reverse anxiety-like behavioral abnormality as psychological consequences 

of diabetes. 

It has been reported that the number of people affected with DM has been steadily increasing 

over the past few decades. Diabetes is often associated with psychological complications such as 

anxiety, which have severe impact on morbidity and mortality[25]. Therefore, anxiety may be a risk 

factor for diabetic complications[26-28]. Streptozotocin induced diabetes is among the most widely 

used preclinical models. STZ-induced diabetes has shown to elicit anxiety like behavioral deficits in 

rodents subjected to elevated plus maze, open field test, social interaction and zero maze tests[29,30]. 

Thus, researchers use STZ-induced diabetes to study diabetes induced behavioral effects. Moreover, 

it is vital to find new targets and new compounds for treating mood disorders comorbid with 

diabetes. 

Recently, it has been shown that NF-κB is involved in CNS functions[31-33]. NF-κB, originally 

discovered in B cells of the immune system, is widespread in neurons in adult brain, notably in 

the hippocampus, cerebral cortex and amygdala[34,35]. Recent studies have shown that NF-κB plays 

an important role in physiological and pathological functions in neurons of CNS[36,37]. It has been 

reported that NF-κB is involved in chronic neurodegenerative diseases such as Alzheimer's disease 

and Parkinson's disease[38,39]. NF-κB also plays an important role in neurite outgrowth, 

synaptogenesis and synaptic plasticity[40]. The identified NF-κB complexes were primarily p50/p65 

heterodimers and also p50/p50 homodimers in CNS. It has been shown that the p50−/− mice showed 

significantly less defecation, more rearing, and more time spent in the center compartment relative to 

wild type control mice n an open field. The mutant mice also spent more time investigating a novel 

object placed in the open field. On the elevated plus maze, p50−/− mice spent more time on the open 

arms and had increased numbers of open arm entries relative to wild type. Therefore, NF-κB 

p50-deficient mice show reduced anxiety-like behaviors[41]. It has been reported that the expression 

http://www.sciencedirect.com/science/article/pii/S0014299914006979#200024415
http://www.sciencedirect.com/science/article/pii/S0014299914006979#200024335
http://www.sciencedirect.com/science/article/pii/S0166432804001226#200003338
http://www.sciencedirect.com/science/article/pii/S0166432804001226#200001205
http://dict.cn/pathological
http://www.sciencedirect.com/science/article/pii/S0166432804001226#200024415
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and nuclear translocation of nuclear factor-kappaB (NF-κB) p65 was elevated in 

the hippocampus and frontal cortex of diabetic mice[42,43]. Inhibition the expression of NF-κB 

ameliorated memory deficits in diabetic mice[44]. However, whether NF-κB is involved in 

anxiety-like behavior in diabetes is still unknown. In the present study, we used PDTC, an NF-κB 

inhibitor, to explore whether NF-κB mediated diabetic anxiety. It was found that diabetic mice after 

STZ-induced diabetic condition for 12 w exhibited a significant decrease in the percentage of open 

arm entries, which accorded with previous reports[29,45]. It was interesting that PDTC treatment for 10 

w after STZ injection for 2 w reversed anxiety like behavior induced by diabetic condition in mice as 

detected by elevated plus maze. 

In conclusion, the present study utilized elevated plus maze to explore whether PDTC affected 

the anxiety like behaviors in STZ-induced diabetic mice. It was found that diabetic mice showed a 

significant increase of anxiety like behaviors, which could be reversed by long term PDTC treatment. 

The present study gave rise to opportunities for newer therapies that could be developed for anxiety 

associated with diabetes. 
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Fig. 1: Behavioral response of mice in the EPM after 10 w treated with PDTC 

  

A. Total entries of mice for 10 min in EPM; B. entries in open arms for 10 min; C. percentage of 

entries in open arms; D. percentage of time spent in open arms. Ctrl: control; DM: diabetic mice; 

PDM: diabetic mice treated with PDTC. Panel bars displays means±SEM. N=8, *P<0.05 vs control; 

# P<0.05 vs DM group 

 

 

 

 

 

 



13 

 

 

Fig. 2: Behavioral response of mice in the OFT 

 

A. Total distance for 10 min in OFT; B. Average speed of mice in OFT. Panel bars displays 

means±SEM, N=8 
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Figure titles and legends: 

 

Fig. 1: Behavioral response of mice in the EPM after 10 w treated with PDTC 

  

A. Total entries of mice for 10 min in EPM; B. entries in open arms for 10 min; C. percentage of 

entries in open arms; D. percentage of time spent in open arms. Ctrl: control; DM: diabetic mice; 

PDM: diabetic mice treated with PDTC. Panel bars displays means±SEM. N=8, *P<0.05 vs control; 

# P<0.05 vs DM group 
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A. Total distance for 10 min in OFT; B. Average speed of mice in OFT. Panel bars displays 

means±SEM, N=8 

 

 


