All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Enhanced controlled transdermal delivery of ambroxol from the EVA matrix

Author(s): CW Cho, DB Kim, HW Cho, SC Shin

To avoid the systemic adverse effects that might occur after oral administration, transdermal delivery of ambroxol was studied as a method for maintaining proper blood levels for an extended period. Release of ambroxol according to concentration and temperature was determined, and permeation of drug through rat skin was studied using two chamber-diffusion cells. The solubility according to PEG 400 volume fraction was highest at 40% PEG 400. The rate of drug release from the EVA matrix increased with increased temperature and drug loading doses. A linear relationship existed between the release rate and the square root of loading rate. The activation energy (Ea) was measured from the slope of the plot of log P versus 1000/T and was found to be 10.71, 10.39, 10.33 and 9.87 kcal/mol for 2, 3, 4 and 5% loading dose from the EVA matrix, respectively. To increase the permeation rate of ambroxol across rat skin from the EVA matrix, various penetration enhancers such as fatty acids (saturated, unsaturated), propylene glycols, glycerides, pyrrolidones, and non-ionic surfactants were used. The enhancing effects of the incorporated enhancers on the skin permeation of ambroxol were evaluated using Franz diffusion cells fitted with intact excised rat skin at 37° using 40% PEG 400 solution as a receptor medium. Among the enhancers used, polyoxyethylene-2-oleyl ether increased the permeation rate by 4.25-fold. In conclusion, EVA matrix containing plasticizer and permeation enhancer could be developed for enhanced transdermal delivery of ambroxol.



Share this