All submissions of the EM system will be redirected to Online Manuscript Submission System. Authors are requested to submit articles directly to Online Manuscript Submission System of respective journal.

Abstract

Formulation development and in vitro characterization of proliposomes for topical Delivery of aceclofenac

Author(s): Vandana Gupta, Ashok K Barupal, Suman Ramteke
School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal-462036, India

Correspondence Address:
Suman Ramteke School of Pharmaceutical Sciences, Rajiv Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal-462036 India sapna1731@rediffmail.com


Non-steroidal antiinflammatory drugs are routinely prescribed for the patients with rheumatic disease and such patients are at increased risk of serious gastrointestinal complications, when non-steroidal antiinflammatory drugs administered by oral route. The aim of the present study was to develop and characterized a vesicular drug carrier system (proliposome) for topical delivery of aceclofenac to overcome the problems related with oral route. Aceclofenac proliposome were prepared by the film-deposition on carriers method and characterized for size and surface morphology, drug content in both proliposomes and liposomal system, percent yield, in vitro drug release studies and drug permeation studies. The prepared system was also characterized for drug-excipients interaction by Fourier transform infrared spectrophotometer and stability studies. The size and surface morphology were studied using optical microscopy, scanning electron microscopy and transmission electron microscopy. A spherical shape of reconstituted aceclofenac liposome with an average vesicular size of about 500 nm was observed in photomicrographs. The maximum entrapment efficiency of reconstituted liposomes was 80.31% whereas the drug content in proliposomes was found to be more than 90%. In vitro release of drug was significantly retarded indicating sustained release of aceclofenac from proliposomes. Stability study was performed at various temperatures indicating that aceclofenac proliposomes are stable at lower temperature.

Full-Text | PDF

 
 
Google scholar citation report
Citations : 66710

Indian Journal of Pharmaceutical Sciences received 66710 citations as per google scholar report