Abstract
Atopic Dermatitis Inhibitory Effect of Chondria crassicaulis Ethanol Extract
Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, 1Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Republic of Korea
Correspondence Address:
D. H. Ahn, Department of Food Science and Technology and Institute of Food Science, Pukyong National University, Busan 48513, Republic of Korea, E-mail: dhahn@pknu.ac.kr
This study investigated the effect of Chondria crassicaulis ethanol extract on degranulation of rat basophilic leukemia-2H3 cells and 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in Bagg Albino/c mice. General properties of Chondria crassicaulis (proximate analysis, total phenol and total flavonoid) were measured; moreover, beta-hexosaminidase release and cytotoxicity in rat basophilic leukemia-2H3 cells, severity of skin dermatitis, production of cytokines, and total immunoglobulin E content in an atopic dermatitis-like mouse model were estimated. Chondria crassicaulis ethanol extract decreased the secretion of beta-hexosaminidase without cytotoxicity in rat basophilic leukemia-2H3 cells and decreased the total immunoglobulin E content in serum. In addition, Chondria crassicaulis ethanol extract decreased the production of interleukin-4 and interleukin-5 in mouse splenocytes, whereas significantly increased the level of interferon gamma. Furthermore, Chondria crassicaulis ethanol extract alleviated skin lesions induced by atopic dermatitis without causing toxicity to mouse splenocytes. Therefore, the present study findings suggest that Chondria crassicaulis ethanol extract can relieve atopic dermatitis by regulating the activity of type 1 T helper and type 2 T helper cells that mediate cellular immune response and it can be used as an effective alternative therapy for atopic dermatitis.