Abstract
Capillarisin Exerts Cardioprotective Effect via Modulating the Matrix Remodelling in an Experimental Model of Myocardial Infarction
Department of Emergency, 1Department of Infectious Disease, Southern district of Guang’anmen Hosptital, China Academy of Chinese Medical Science, Beijing 100053, China
Correspondence Address:
Mao Ming, Department of Infectious Disease, Southern district of Guang’anmen Hosptital, China Academy of Chinese Medical Science, Beijing 100053, China, E-mail: maoming345@gmail.com
Capillarisin is a primary bioactive compound derived from Artemisia capillaris is known to possess antioxidative and anti-inflammatory responses. Although, studies on the protecting effect of capillarisin against heart attack are still not clear. Therefore, in the current investigation, the experimental model of myocardial infarction was induced using isoproterenol in rats. Male Wistar rats were separated into 4 clusters as control, isoproterenol-induced myocardial infarction, capillarisin pretreated (10 mg/kg/d) before isoproterenol induction, capillarisin drug control for 4 w. Finally, infarct size, cardiac markers, such as creatinine kinase, lactate dehydrogenase, matrix proteins and microRNA signatures were revealed by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Rats induced with myocardial infarction demonstrated the abnormality in echocardiographic measurements with increased biomarkers, for example, heart type fatty acid binding protein, creatinine kinase and troponin-I compared to control. While capillarisin pre-treated rats banned myocardial infarction considerably (p<0.001) with restored cardiac functions. Besides, capillarisin pre-treatment repealed the fibrosis onset with restored matrix proteins. In addition, cardiac biomarkers, for example, atrial natriuretic peptide, erythroid transcription factor, nuclear factor of activated T cells were found increased with reduced sarco(endo)plasmic reticulum calcium-ATPase 2 in rats suffering from myocardial infarction. Additionally, the messenger ribonucleic acid of matrix signaling pathways were also found reduced obviously in capillarisin treatment which was disturbed in myocardial infarction induced rats. Capillarisin protected the hearts from failing induced by isoproterenol in rats and provides cardioprotective effect, through restoring the matrix signaling, antiinflammatory, antioxidant effect suggested possible drug candidate for the therapy of heart attack.